Consensus formation simulation in a social network modeling controversial opinion dynamics with pairwise interactions

被引:7
作者
Medina-Guevara, Maria G. [1 ]
Macias-Diaz, Jorge E. [2 ]
Gallegos, Armando [1 ]
Vargas-Rodriguez, Hector [1 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Dept Ciencias Exactas & Tecnol, Enrique Diaz de Leon 1144, Lagos De Moreno, Jalisco, Mexico
[2] Univ Autonoma Aguascalientes, Dept Matemat & Fis, Ciudad Univ, Aguascalientes 20131, Mexico
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2017年 / 28卷 / 05期
关键词
Network with pairwise interactions; social simulation; opinion dynamics; stability analysis; strong consensus; weak consensus;
D O I
10.1142/S0129183117500589
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we consider a system of coupled finite-difference equations which incorporates a variety of opinion formation models, and use it to describe the dynamics of opinions on controversial subjects. The social network consists of a finite number of agents with pairwise interactions at discrete times. Meanwhile, the opinion of each agent is updated following a general nonlinear law which considers parameters identified as the personal constants of each of the members. We establish conditions that guarantee the existence of global attracting points (strong consensus) and intervals (weak consensus). Moreover, we note that these conditions are independent of the weight matrix and the number of agents of the network. Two particular scenarios are investigated numerically in order to confirm the validity of the analytical results.
引用
收藏
页数:18
相关论文
共 17 条
[1]  
[Anonymous], 2002, J ARTIF SOC SOC SIMU
[2]   Critical Behaviors in Contagion Dynamics [J].
Bottcher, L. ;
Nagler, J. ;
Herrmann, H. J. .
PHYSICAL REVIEW LETTERS, 2017, 118 (08)
[3]   Complex contagions and the weakness of long ties [J].
Centola, Damon ;
Macy, Michael .
AMERICAN JOURNAL OF SOCIOLOGY, 2007, 113 (03) :702-734
[4]   Mixing beliefs among interacting agents [J].
Deffuant, G ;
Neau, D ;
Amblard, F ;
Weisbuch, G .
APPLICATIONS OF SIMULATION TO SOCIAL SCIENCES, 2000, :87-98
[5]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[6]   Binary-State Dynamics on Complex Networks: Pair Approximation and Beyond [J].
Gleeson, James P. .
PHYSICAL REVIEW X, 2013, 3 (02)
[7]   THE STRENGTH OF WEAK TIES [J].
GRANOVETTER, MS .
AMERICAN JOURNAL OF SOCIOLOGY, 1973, 78 (06) :1360-1380
[8]   The role of fanatics in consensus formation [J].
Gunduc, Semra .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (03)
[9]  
Hegselmann R, 2002, JASSS-J ARTIF SOC S, V5
[10]  
Hilborn R.C., 2000, CHAOS NONLINEAR DYNA