Quadratic equations over finite fields and class numbers of real quadratic fields

被引:1
作者
Agoh, T [1 ]
Shoji, T [1 ]
机构
[1] Sci Univ Tokyo, Dept Math, Noda, Chiba 278, Japan
来源
MONATSHEFTE FUR MATHEMATIK | 1998年 / 125卷 / 04期
关键词
quadratic forms over finite fields; Weyl groups; hyperplane complements; partitions; combinatorial identities; class numbers; real quadratic fields;
D O I
10.1007/BF01305343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and F-p the finite field with p elements. In the present paper we shall investigate the number of points of certain quadratic hypersurfaces in the vector space F-p(n) and derive explicit formulas for them. In addition, we shall show that the class number of the real quadratic field Q(root p) (where p = 1 (mod 4)) over the field Q of rational numbers can be expressed by means of these formulas.
引用
收藏
页码:279 / 292
页数:14
相关论文
共 8 条
[1]  
Agoh T, 1989, Acta Mathematica Sinica. New Series, V5, P281, DOI 10.1007/BF02107554
[2]  
Ankeny N.C., 1962, Acta Arith., V7, P271
[3]   THE CLASS-NUMBER OF REAL QUADRATIC NUMBER FIELDS [J].
ANKENY, NC ;
ARTIN, E ;
CHOWLA, S .
ANNALS OF MATHEMATICS, 1952, 56 (03) :479-493
[4]   UPPER-BOUNDS FOR CLASS-NUMBERS OF REAL QUADRATIC FIELDS [J].
LE, MH .
ACTA ARITHMETICA, 1994, 68 (02) :141-144
[5]  
LE MH, 1993, P AM MATH SOC, V117, P1
[6]  
Lidl R., 1983, FINITE FIELDS
[7]   UNITARY REFLECTION GROUPS AND CO-HOMOLOGY [J].
ORLIK, P ;
SOLOMON, L .
INVENTIONES MATHEMATICAE, 1980, 59 (01) :77-94
[8]  
Solomon L., 1963, NAGOYA MATH J, V22, P57