Quadratic equations over finite fields and class numbers of real quadratic fields

被引:1
作者
Agoh, T [1 ]
Shoji, T [1 ]
机构
[1] Sci Univ Tokyo, Dept Math, Noda, Chiba 278, Japan
来源
MONATSHEFTE FUR MATHEMATIK | 1998年 / 125卷 / 04期
关键词
quadratic forms over finite fields; Weyl groups; hyperplane complements; partitions; combinatorial identities; class numbers; real quadratic fields;
D O I
10.1007/BF01305343
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and F-p the finite field with p elements. In the present paper we shall investigate the number of points of certain quadratic hypersurfaces in the vector space F-p(n) and derive explicit formulas for them. In addition, we shall show that the class number of the real quadratic field Q(root p) (where p = 1 (mod 4)) over the field Q of rational numbers can be expressed by means of these formulas.
引用
收藏
页码:279 / 292
页数:14
相关论文
共 8 条