The Discrete and Mixed Minimax 2-Center Problem

被引:1
作者
Xu, Yi [1 ]
Peng, Jigen [1 ,2 ]
Xu, Yinfeng [3 ,4 ]
Zhu, Binhai [5 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Beijing Ctr Math & Informat Interdisciplinary Sci, Beijing 100048, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Management, Xian 710049, Peoples R China
[4] State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
[5] Montana State Univ, Dept Comp Sci, Bozeman, MT 59717 USA
来源
COMBINATORIAL OPTIMIZATION AND APPLICATIONS, (COCOA 2015) | 2015年 / 9486卷
关键词
2-center problem; Farthest point Voronoi diagram; Computational geometry; ALGORITHM;
D O I
10.1007/978-3-319-26626-8_8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let P be a set of n points in the plane, the discrete minimax 2-center problem (DMM2CP) is that of finding two disks centered at {p(1), p(2)} is an element of P that minimize the maximum of two terms, namely, the Euclidean distance between two centers and the distance of any other point to the closer center. The mixed minimax 2-center problem (MMM2CP) is when one of the two centers is not in P. We present algorithms for solving the DMM2CP and MMM2CP. The time complexity of solving DMM2CP and MMM2CP are O(n(2) log n) and O(n(2) log(2) n) respectively.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 14 条
[1]   The discrete 2-center problem [J].
Agarwal, PK ;
Sharir, M ;
Welzl, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 20 (03) :287-305
[2]   Semi-online maintenance of geometric optima and measures [J].
Chan, TM .
SIAM JOURNAL ON COMPUTING, 2003, 32 (03) :700-716
[3]   More planar two-center algorithms [J].
Chan, TM .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1999, 13 (03) :189-198
[4]  
Eppstein D, 1997, PROCEEDINGS OF THE EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P131
[5]   Facility location and the geometric minimum-diameter spanning tree [J].
Gudmundsson, J ;
Haverkort, H ;
Park, SM ;
Shin, CS ;
Wolff, A .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2004, 27 (01) :87-106
[6]   FINDING TAILORED PARTITIONS [J].
HERSHBERGER, J ;
SURI, S .
JOURNAL OF ALGORITHMS, 1991, 12 (03) :431-463
[7]   MINIMUM DIAMETER SPANNING-TREES AND RELATED PROBLEMS [J].
HO, JM ;
LEE, DT ;
CHANG, CH ;
WONG, CK .
SIAM JOURNAL ON COMPUTING, 1991, 20 (05) :987-997
[8]  
Jaromczyk J. W., 1994, Proceedings of the Tenth Annual Symposium on Computational Geometry, P303, DOI 10.1145/177424.178038
[9]   ON THE COMPLEXITY OF SOME COMMON GEOMETRIC LOCATION-PROBLEMS [J].
MEGIDDO, N ;
SUPOWIT, KJ .
SIAM JOURNAL ON COMPUTING, 1984, 13 (01) :182-196
[10]   LINEAR-TIME ALGORITHMS FOR LINEAR-PROGRAMMING IN R3 AND RELATED PROBLEMS [J].
MEGIDDO, N .
SIAM JOURNAL ON COMPUTING, 1983, 12 (04) :759-776