Improved Robust Video Saliency Detection Based on Long-Term Spatial-Temporal Information

被引:96
作者
Chen, Chenglizhao [1 ]
Wang, Guotao [1 ]
Peng, Chong [1 ]
Zhang, Xiaowei [1 ]
Qin, Hong [2 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
[2] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Saliency detection; Deep learning; Quality assessment; Trajectory; Computational modeling; Color; Training; Video saliency detection; spatial-temporal saliency consistency; low-level saliency clues; long-term information revealing; OBJECT DETECTION; SEGMENTATION; OPTIMIZATION;
D O I
10.1109/TIP.2019.2934350
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes to utilize supervised deep convolutional neural networks to take full advantage of the long-term spatial-temporal information in order to improve the video saliency detection performance. The conventional methods, which use the temporally neighbored frames solely, could easily encounter transient failure cases when the spatial-temporal saliency clues are less-trustworthy for a long period. To tackle the aforementioned limitation, we plan to identify those beyond-scope frames with trustworthy long-term saliency clues first and then align it with the current problem domain for an improved video saliency detection.
引用
收藏
页码:1090 / 1100
页数:11
相关论文
共 67 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Jiang, Huaizu ;
Li, Jia .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5706-5722
[3]   Structure-Aware Adaptive Diffusion for Video Saliency Detection [J].
Chen, Chenglizhao ;
Wang, Guotao ;
Peng, Chong .
IEEE ACCESS, 2019, 7 :79770-79782
[4]   Bilevel Feature Learning for Video Saliency Detection [J].
Chen, Chenglizhao ;
Li, Shuai ;
Qin, Hong ;
Pan, Zhenkuan ;
Yang, Guowei .
IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (12) :3324-3336
[5]   A Novel Bottom-Up Saliency Detection Method for Video With Dynamic Background [J].
Chen, Chenglizhao ;
Li, Yunxiao ;
Li, Shuai ;
Qin, Hong ;
Hao, Aimin .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (02) :154-158
[6]   Video Saliency Detection via Spatial-Temporal Fusion and Low-Rank Coherency Diffusion [J].
Chen, Chenglizhao ;
Li, Shuai ;
Wang, Yongguang ;
Qin, Hong ;
Hao, Aimin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) :3156-3170
[7]   Robust salient motion detection in non-stationary videos via novel integrated strategies of spatio-temporal coherency clues and low-rank analysis [J].
Chen, Chenglizhao ;
Li, Shuai ;
Qin, Hong ;
Hao, Aimin .
PATTERN RECOGNITION, 2016, 52 :410-432
[8]   Real-time and robust object tracking in video via low-rank coherency analysis in feature space [J].
Chen, Chenglizhao ;
Li, Shuai ;
Qin, Hong ;
Hao, Aimin .
PATTERN RECOGNITION, 2015, 48 (09) :2885-2905
[9]   Structure-Sensitive Saliency Detection via Multilevel Rank Analysis in Intrinsic Feature Space [J].
Chen, Chenglizhao ;
Li, Shuai ;
Qin, Hong ;
Hao, Aimin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (08) :2303-2316
[10]   SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection [J].
Chen, Yuhuan ;
Zou, Wenbin ;
Tang, Yi ;
Li, Xia ;
Xu, Chen ;
Komodakis, Nikos .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (07) :3345-3357