Class number one problem for imaginary function fields:: The cyclic prime power case

被引:3
作者
Sémirat, S [1 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, F-75252 Paris 05, France
关键词
D O I
10.1006/jnth.2000.2535
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we determine all finite separable imaginary extensions K/F-q(x) whose maximal order is a principal ideal domain in case F/F-q(x) is a non zero genus cyclic extension of prime power degree. There exist exactly 42 such extensions, among which 7 are non isomorphic over F-q. (C) 2000 Academic Press.
引用
收藏
页码:166 / 183
页数:18
相关论文
共 13 条
[1]   Imaginary bicyclic biquadratic function fields in characteristic two [J].
Aubry, Y ;
Le Brigand, D .
JOURNAL OF NUMBER THEORY, 1999, 77 (01) :36-50
[2]  
AUBRY Y, 1996, FINITE FIELDS APPL G, P23
[3]  
BOSTON N, 1997, ALGEBRAIC THEORY
[4]   UNITS AND CLASS-GROUPS IN CYCLOTOMIC FUNCTION-FIELDS [J].
GALOVICH, S ;
ROSEN, M .
JOURNAL OF NUMBER THEORY, 1982, 14 (02) :156-184
[5]   NUMBER OF POINTS OF JACOBIANS ON A FINITE-FIELD [J].
LACHAUD, G ;
MARTINDESCHAMPS, M .
ACTA ARITHMETICA, 1990, 56 (04) :329-340
[6]   ALGEBRAIC FUNCTION FIELDS WITH SMALL CLASS NUMBER [J].
LEITZEL, JRC ;
MADAN, ML ;
QUEEN, CS .
JOURNAL OF NUMBER THEORY, 1975, 7 (01) :11-27
[7]   UNIQUE FACTORIZATION IN CERTAIN RINGS OF ALGEBRAIC FUNCTIONS [J].
MACRAE, RE .
JOURNAL OF ALGEBRA, 1971, 17 (02) :243-&
[8]   Towers of global function fields with asymptotically many rational places and an improvement on the Gilbert-Varshamov bound [J].
Niederreiter, H ;
Xing, CP .
MATHEMATISCHE NACHRICHTEN, 1998, 195 :171-186
[9]   S-UNITS AND S-CLASS GROUP IN ALGEBRAIC FUNCTION FIELDS [J].
ROSEN, M .
JOURNAL OF ALGEBRA, 1973, 26 (01) :98-108
[10]  
Rosen M., 1987, EXPO MATH, V5, P365