N-doped hierarchical porous carbon derived from hypercrosslinked diblock copolymer for capacitive deionization

被引:83
作者
Li, Yang [1 ]
Hussain, Ijaz [1 ]
Qi, Junwen [1 ]
Liu, Chao [1 ]
Li, Jiansheng [1 ]
Shen, Jinyou [1 ]
Sun, Xiuyun [1 ]
Han, Weiqing [1 ]
Wang, Lianjun [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Environm & Biol Engn, Jiangsu Key Lab Chem Pollut Control & Resources R, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Nitrogen doping; Hierarchical porous carbon; Diblock copolymer; Melamine; Capacitive deionization; ACTIVATED CARBON; MESOPOROUS CARBON; GRAPHITE OXIDE; SURFACE-AREA; GRAPHENE; PERFORMANCE; ELECTRODES; DESALINATION; AEROGEL; ENERGY;
D O I
10.1016/j.seppur.2016.04.007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Capacitive deionization (CDI) has attracted huge interest as an emerging desalination technology. To explore carbon electrode materials with high performance is the key for CDI technology. In this work, the N-doped hierarchical porous carbon (N-HPC) was fabricated via pyrolysis of hypercrosslinked diblock copolymer (PEO113-b-PS192) with a nitrogen-enriched melamine. The as-prepared N-HPC was further applied as CDI electrode. This electrode showed enhanced electrochemical performance with a specific capacitance of 182.6 F g(-1) and an outstanding electrosorption capacity of 13.76 mg g(-1) in 500 mg L-1 NaCl solution, which are higher than those of its undoped counterpart (66.7 F g(-1) and 10.27 mg g(-1), respectively). Such an improvement was attributed to synergistic effect from the combination of nitrogen-doped property and the hierarchical porous structure. After 6 adsorption-desorption cycles, a stable electrosorption capacity can be realized without appreciable declination, suggesting a good repeatability of electrosorption process. These results imply that N-HPC has great potential as a promising electrode material for CDI application. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 198
页数:9
相关论文
共 59 条
[1]   The preparation of active carbons from coal by chemical and physical activation [J].
Ahmadpour, A ;
Do, DD .
CARBON, 1996, 34 (04) :471-479
[2]   Developments in thermal desalination processes: Design, energy, and costing aspects [J].
Al-Sahali, Mohammad ;
Ettouney, Hisham .
DESALINATION, 2007, 214 (1-3) :227-240
[3]   FRIEDEL-CRAFTS CROSSLINKING METHODS FOR POLYSTYRENE MODIFICATION .1. PREPARATION AND KINETICS [J].
BUSSING, WR ;
PEPPAS, NA .
POLYMER, 1983, 24 (02) :209-216
[4]   Block-Copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes [J].
Carriazo, Daniel ;
Pico, Fernando ;
Gutierrez, Maria C. ;
Rubio, Fausto ;
Rojo, Jose M. ;
del Monte, Francisco .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (04) :773-780
[5]   PREPARATION OF ACTIVATED CARBON BY CHEMICAL ACTIVATION WITH ZNCL2 [J].
CATURLA, F ;
MOLINASABIO, M ;
RODRIGUEZREINOSO, F .
CARBON, 1991, 29 (07) :999-1007
[6]   Enhancement of capacitive deionization capacity of hierarchical porous carbon [J].
Chao, Lumeng ;
Liu, Zhenyu ;
Zhang, Guoxin ;
Song, Xiaona ;
Lei, Xiaodong ;
Noyong, Michael ;
Simon, Ulrich ;
Chang, Zheng ;
Sun, Xiaoming .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (24) :12730-12737
[7]   Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors [J].
Chen, Li-Feng ;
Zhang, Xu-Dong ;
Liang, Hai-Wei ;
Kong, Mingguang ;
Guan, Qing-Fang ;
Chen, Ping ;
Wu, Zhen-Yu ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (08) :7092-7102
[8]   Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes [J].
Chen, Zhaolin ;
Song, Cunyi ;
Sun, Xiaowei ;
Guo, Hongfei ;
Zhu, Guangdong .
DESALINATION, 2011, 267 (2-3) :239-243
[9]   Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene [J].
Deng, Yonghui ;
Yu, Ting ;
Wan, Ying ;
Shi, Yifeng ;
Meng, Yan ;
Gu, Dong ;
Zhang, Lijuan ;
Huang, Yan ;
Liu, Chong ;
Wu, Xiaojing ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (06) :1690-1697
[10]   Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications [J].
Dutta, Saikat ;
Bhaumik, Asim ;
Wu, Kevin C. -W. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (11) :3574-3592