Ultimate nano-electronics: New materials and device concepts for scaling nano-electronics beyond the Si roadmap

被引:33
|
作者
Collaert, N. [1 ]
Alian, A. [1 ]
Arimura, H. [1 ]
Boccardi, G. [1 ]
Eneman, G. [1 ]
Franco, J. [1 ]
Ivanov, Ts. [1 ]
Lin, D. [1 ]
Loo, R. [1 ]
Merckling, C. [1 ]
Mitard, J. [1 ]
Pourghaderi, M. A. [1 ]
Rooyackers, R. [1 ]
Sioncke, S. [1 ]
Sun, J. W. [1 ]
Vandooren, A. [1 ]
Veloso, A. [1 ]
Verhulst, A. [1 ]
Waldron, N. [1 ]
Witters, L. [1 ]
Zhou, D. [1 ]
Barla, K. [1 ]
Thean, A. V. -Y. [1 ]
机构
[1] IMEC, Kapeldreef 75, Heverlee, Belgium
关键词
High mobility materials; FinFET; TFET; Nanowires; FIELD-EFFECT TRANSISTORS; GERMANIUM; PERFORMANCE; DESIGN; SEMICONDUCTOR; PASSIVATION; TECHNOLOGY; MOBILITY;
D O I
10.1016/j.mee.2014.08.005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we will give an overview of the innovations in materials and new device concepts that will be needed to continue Moore's law to the sub-10 nm technology nodes. To meet the power and performance requirements high mobility materials in combination with new device concepts like tunnel FETs and gate-all-around devices will need to be introduced. As the density is further increased and it becomes increasingly difficult to put contacts, spacers and gate in the available gate pitch, disruptive integration schemes such as vertical transistors and monolithic 3D integration might lead the way to the ultimate scaling of CMOS. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:218 / 225
页数:8
相关论文
共 50 条
  • [31] Principles and Trends in Quantum Nano-Electronics and Nano-Magnetics for Beyond-CMOS Computing
    Young, Ian A.
    Nikonov, Dmitri E.
    2017 47TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC), 2017, : 1 - 5
  • [32] 3-D silicon technology for nano-electronics
    Kim, Kinam
    Jung, Soon-Moon
    IEEE NMDC 2006: IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE 2006, PROCEEDINGS, 2006, : 84 - 85
  • [33] Nanoporous materials through block copolymer templating with application for nano-electronics and nano-magnetics
    Tolbert, Sarah H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [34] Tailored nano-electronics and photonics with two-dimensional materials at terahertz frequencies
    Viti, Leonardo
    Vitiello, Miriam Serena
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (17)
  • [35] CONAN - A design exploration framework for reliable nano-electronics architectures
    Cotofana, S
    Schmid, A
    Leblebici, Y
    Ionescu, A
    Soffke, O
    Zipf, P
    Glesner, M
    Rubio, A
    16TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURE AND PROCESSORS, PROCEEDINGS, 2005, : 260 - 267
  • [36] Silicon-carbide nano-clusters: A pathway to future nano-electronics
    Ray, Asok K.
    Huda, M. N.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2006, 3 (03) : 315 - 341
  • [37] In sight into nano-electronics: Devices, functional principles and a virtual trip
    Gleiche, Michael
    Haumann, Carola
    Baron, Waldemar
    Dressen, Jochen
    VAKUUM IN FORSCHUNG UND PRAXIS, 2006, 18 (05) : 26 - 31
  • [38] International Conference on Micro- and Nano-Electronics 2014 Introduction
    Orlikovsky, Alexander A.
    INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2014, 2014, 9440 : XV - XV
  • [39] Silicon-carbide nano-clusters: A pathway to future nano-electronics
    Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States
    不详
    J. Comput. Theor. Nanosci., 2006, 3 (315-341):
  • [40] Electromagnetic Compatibility in Nano-Electronics: Manifestation and Suppression of Quantum Crosstalk
    Slepyan, G.
    Boag, A.
    Mordachev, V.
    Sinkevich, E.
    Maksimenko, S.
    Kuzhir, P.
    Miano, G.
    Portnoi, M. E.
    Maffucci, A.
    2015 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, COMMUNICATIONS, ANTENNAS AND ELECTRONIC SYSTEMS (COMCAS), 2015,