Ultimate nano-electronics: New materials and device concepts for scaling nano-electronics beyond the Si roadmap

被引:33
|
作者
Collaert, N. [1 ]
Alian, A. [1 ]
Arimura, H. [1 ]
Boccardi, G. [1 ]
Eneman, G. [1 ]
Franco, J. [1 ]
Ivanov, Ts. [1 ]
Lin, D. [1 ]
Loo, R. [1 ]
Merckling, C. [1 ]
Mitard, J. [1 ]
Pourghaderi, M. A. [1 ]
Rooyackers, R. [1 ]
Sioncke, S. [1 ]
Sun, J. W. [1 ]
Vandooren, A. [1 ]
Veloso, A. [1 ]
Verhulst, A. [1 ]
Waldron, N. [1 ]
Witters, L. [1 ]
Zhou, D. [1 ]
Barla, K. [1 ]
Thean, A. V. -Y. [1 ]
机构
[1] IMEC, Kapeldreef 75, Heverlee, Belgium
关键词
High mobility materials; FinFET; TFET; Nanowires; FIELD-EFFECT TRANSISTORS; GERMANIUM; PERFORMANCE; DESIGN; SEMICONDUCTOR; PASSIVATION; TECHNOLOGY; MOBILITY;
D O I
10.1016/j.mee.2014.08.005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we will give an overview of the innovations in materials and new device concepts that will be needed to continue Moore's law to the sub-10 nm technology nodes. To meet the power and performance requirements high mobility materials in combination with new device concepts like tunnel FETs and gate-all-around devices will need to be introduced. As the density is further increased and it becomes increasingly difficult to put contacts, spacers and gate in the available gate pitch, disruptive integration schemes such as vertical transistors and monolithic 3D integration might lead the way to the ultimate scaling of CMOS. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:218 / 225
页数:8
相关论文
共 50 条
  • [1] Nano-electronics - A new field for SISPAD
    Sugano, T
    SISPAD '96 - 1996 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 1996, : 1 - 2
  • [2] Rectifying a problem in nano-electronics
    Earis, P
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (21) : C82 - C82
  • [3] Nano-electronics and spintronics with nanoparticles
    Karmakar, S.
    Kumar, S.
    Rinaldi, R.
    Maruccio, G.
    INTERNATIONAL CONFERENCE ON TRENDS IN SPINTRONICS AND NANOMAGNETISM (TSN 2010), 2011, 292
  • [4] Nano-electronics in biological applications
    Borghs, G
    THERMAL AND MECHANICAL SIMULATION AND EXPERIMENTS IN MICROELECTRONICS AND MICROSYSTEMS, 2004, : 13 - 13
  • [5] Nano-electronics Challenge Chip Designers meet Real Nano-electronics in 2010s?
    Fujita, Shinobu
    DATE: 2009 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, VOLS 1-3, 2009, : 431 - 432
  • [6] Sensors, Nano-Electronics and Photonics for the Army of 2030 and Beyond
    Perconti, Philip
    Alberts, W. C. Kirkpatrick, II
    Bajaj, Jagmohan
    Schuster, Jonathan
    Reed, Meredith
    QUANTUM SENSING AND NANO ELECTRONICS AND PHOTONICS XIII, 2016, 9755
  • [7] Advanced fabrication technologies for nano-electronics
    Simmons, JA
    Sherwin, ME
    Weckwerth, MV
    Harff, NE
    Eiles, TM
    Baca, WE
    Hou, H
    Hammons, BE
    PROCEEDINGS OF THE TWENTY-FOURTH STATE-OF-THE-ART-PROGRAM ON COMPOUND SEMICONDUCTORS, 1996, 96 (02): : 186 - 202
  • [8] Technology Evolution of Silicon Nano-Electronics
    Zaima, Shigeaki
    ULSI PROCESS INTEGRATION 6, 2009, 25 (07): : 33 - 47
  • [9] Hierarchical process simulation for nano-electronics
    Dutton, RW
    Kan, EC
    VLSI DESIGN, 1998, 6 (1-4) : 385 - 391
  • [10] Nano Security: From Nano-Electronics to Secure Systems
    Polian, Ilia
    Altmann, Frank
    Arul, Tolga
    Boit, Christian
    Brederlow, Ralf
    Davi, Lucas
    Drechsler, Rolf
    Du, Nan
    Eisenbarth, Thomas
    Gueneysu, Tim
    Hermann, Sascha
    Hiller, Matthias
    Leupers, Rainer
    Merchant, Farhad
    Mussenbrock, Thomas
    Katzenbeisser, Stefan
    Kumar, Akash
    Kunz, Wolfgang
    Mikolajick, Thomas
    Pachauri, Vivek
    Seifert, Jean-Pierre
    Torres, Frank Sill
    Trommer, Jens
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1334 - 1339