Adaptive generalized function projective synchronization of uncertain chaotic systems

被引:75
作者
Yu, Yongguang [1 ,3 ]
Li, Han-Xiong [2 ,3 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Cent S Univ, Sch Mech & Elect Engn, Changsha 410083, Peoples R China
[3] City Univ Hong Kong, Dept MEEM, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized synchronization; Function projective synchronization; Uncertain chaotic system; Parameter estimation; HYPERCHAOTIC SYSTEMS; PARAMETERS; NETWORKS; CIRCUITS;
D O I
10.1016/j.nonrwa.2009.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper mainly investigates adaptive generalized function projective synchronization of two different uncertain chaotic systems, which is a further extension of many existing projection synchronization schemes, such as modified projection synchronization, function projective synchronization and so on. On the basis of Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is designed, and some parameter update laws for estimating the unknown parameters of the systems are also gained. This technique is applied to achieve synchronization between Lorenz and Rossler chaotic systems. The numerical simulations demonstrate the validity and feasibility of the proposed method. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2456 / 2464
页数:9
相关论文
共 34 条
[1]   Chaos synchronization of Lu dynamical system [J].
Agiza, HN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (1-2) :11-20
[2]   The function cascade synchronization method and applications [J].
An, Hongli ;
Chen, Yong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (10) :2246-2255
[3]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[4]   Chaos-based M-ary digital communication technique using controlled projective synchronisation [J].
Chee, C. Y. ;
Xu, D. .
IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2006, 153 (04) :357-360
[5]  
Chen G., 1998, CHAOS ORDER METHODOL
[6]   The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems [J].
Chen, Yong ;
An, Hongli ;
Li, Zhibin .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) :96-110
[7]   Function projective synchronization between two identical chaotic systems [J].
Chen, Yong ;
Li, Xin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (05) :883-888
[8]   SYNCHRONIZATION OF LORENZ-BASED CHAOTIC CIRCUITS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV ;
STROGATZ, SH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :626-633
[9]   Function projective synchronization of different chaotic systems with uncertain parameters [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
PHYSICS LETTERS A, 2008, 372 (33) :5402-5410
[10]   On the chaos synchronization phenomena [J].
Femat, R ;
Solís-Perales, G .
PHYSICS LETTERS A, 1999, 262 (01) :50-60