Construction of Pth-Stage Nonuniform Discrete Wavelet Frames

被引:0
作者
Malhotra, Hari Krishan [1 ]
Vashisht, Lalit Kumar [1 ]
机构
[1] Univ Delhi, Dept Math, Delhi 110007, India
关键词
discrete frame; Bessel sequence; duality; nonuniform wavelets; wavelets; spectral pair; perturbation; MULTIRESOLUTION ANALYSES; BASES;
D O I
10.1007/s00025-021-01427-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the work of Frazier; and Gabardo and Nashed, we study P-th-stage nonuniform discrete wavelet frames (P-th-stage NUDW frames, in short) for l(2) (Lambda), a nonuniform discrete space. In nonuniform discrete wavelet frames, the translation set is not necessary a group but a spectrum which is based on the theory of spectral pairs. We characterize first-stage nonuniform discrete Bessel sequences and wavelet frames in nonuniform discrete spaces. Duality and stability of first-stage NUDW frames are also discussed. Finally, by using first-stage NUDW frames, we provide a suitable way to construct the P-th-stage NUDW frames. We illustrate our construction with the help of a concrete example.
引用
收藏
页数:30
相关论文
共 36 条
  • [1] WEAVING FRAMES
    Bemrose, Travis
    Casazza, Peter G.
    Groechenig, Karlheinz
    Lammers, Mark C.
    Lynch, Richard G.
    [J]. OPERATORS AND MATRICES, 2016, 10 (04): : 1093 - 1116
  • [2] Bhat MY, 2019, COMPLEX ANAL OPER TH, V13, P2203, DOI 10.1007/s11785-018-0813-6
  • [3] Casazza P.G., 2012, Finite frames: Theory and applications
  • [4] Christensen O., 2016, INTRO FRAMES RIESZ B, V2nd, DOI DOI 10.1007/978-3-319-25613-9
  • [5] Cohen A., 1995, WAVELETS MULTISCALE, DOI DOI 10.1007/978-1-4899-4425-2
  • [6] The canonical group of transformations of a Weyl-Heisenberg frame; applications to Gaussian and Hermitian frames
    de gosson, Maurice A.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 : 375 - 383
  • [7] Deepshikha, 2018, HOUSTON J MATH, V44, P887
  • [8] Vector-valued (super) weaving frames
    Deepshikha
    Vashisht, Lalit Kumar
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 134 : 48 - 57
  • [9] Weaving K-Frames in Hilbert Spaces
    Deepshikha
    Vashisht, Lalit K.
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [10] Generalized Weaving Frames for Operators in Hilbert Spaces
    Deepshikha
    Vashisht, Lalit K.
    Verma, Geetika
    [J]. RESULTS IN MATHEMATICS, 2017, 72 (03) : 1369 - 1391