THE EXISTENCE OF THREE SOLUTIONS FOR p-LAPLACIAN PROBLEMS WITH CRITICAL AND SUPERCRITICAL GROWTH

被引:10
作者
Zhao, Lin [1 ,2 ]
Zhao, Peihao [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] China Univ Mining & Technol, China & Sch Sci, Xuzhou 221116, Peoples R China
关键词
Critical point theory; variational methods; three solutions; Moser iteration; CRITICAL SOBOLEV EXPONENTS; LINEAR ELLIPTIC-EQUATIONS; CRITICAL-POINTS THEOREM; POSITIVE SOLUTIONS; VARIATIONAL-METHODS; MULTIPLICITY;
D O I
10.1216/RMJ-2014-44-4-1383
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we deal with the existence and multiplicity of solutions for the p-Laplacian problems involving critical and supercritical Sobolev exponent via variational arguments. By means of the truncation combining with the Moser iteration, we extend the result obtained by Ricceri [14] to the critical and supercritical case.
引用
收藏
页码:1383 / 1397
页数:15
相关论文
共 20 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]  
[Anonymous], 1997, Adv. Differ. Equ.
[3]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[4]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]   On an elliptic equation of p-Kirchhoff type via variational methods [J].
Correa, Francisco Julio S. A. ;
Figueiredo, Giovany M. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (02) :263-277
[7]   Positive solutions for some quasilinear equations with critical and supercritical growth [J].
Figueiredo, Giovany M. ;
Furtado, Marcelo F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (07) :1600-1616
[8]   Compact Sobolev embedding theorems involving symmetry and its application [J].
Gao, Juanjuan ;
Zhao, Peihao ;
Zhang, Yong .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (02) :161-180
[9]   QUASILINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
GUEDDA, M ;
VERON, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (08) :879-902
[10]  
Lions P-L., 1985, Rev. Mat. Iberoamericana, V1, P145, DOI [DOI 10.4171/RMI/6, 10.4171/rmi/6]