Prediction of Hydrocarbon Reservoir Parameter Using a GA-RBF Neural Network

被引:2
作者
Chen, Jing
Li, Zhenhua
Zhao, Dan
机构
来源
COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS | 2009年 / 51卷
关键词
reservoir parameter prediction; RBF network; genetic algorithm; structure optimization;
D O I
10.1007/978-3-642-04962-0_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prediction of hydrocarbon reservoir characteristics using seismic at tributes is a very complicated problem with much nonlinear relation. The traditional BP neural network with a gradient decent approach may lead to local minima problem, resulting in the production of unstable and non-convergent solutions. To solve these problems and improve the precision, this paper introduces a GA-based optimized method of RBF neural network. A case studs shows that the GA-RBF algorithm not only works with high predicting precision comparable to real measured data in oil reservoir thickness, but also is superior to that of tradition BP neural network.
引用
收藏
页码:379 / 386
页数:8
相关论文
共 10 条
[1]  
AHMAD M, 2008, PET SCI TECHNOL, P1656
[2]  
AMINIAN K, 2003, P SPE E REG M PITTSB, P35
[3]  
BARRETO AMS, 2006, NEUROCOMPUTING
[4]  
KOKSHENEV I, 2008, 10 BRAZ S NEUR NETW, P9
[5]  
LI S, 2007, APPL MATH COMPUT, P1003
[6]   Application of GA-RBF networks to the nondestructive determination of active component in pharmaceutical powder by NIR spectroscopy [J].
Qu, Nan ;
Mi, Hong ;
Wang, Bin ;
Ren, Yulin .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2009, 40 (02) :162-167
[7]   Design of neural networks using genetic algorithm for the permeability estimation of the reservoir [J].
Saemi, Mohsen ;
Ahmadi, Morteza ;
Varjani, Ali Yazdian .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2007, 59 (1-2) :97-105
[8]  
SAXENA A, 2006, SOFT COMPUT, P1568
[9]  
SKUBALSKARAFAJO.E, 2008, INT J APPL MATH COMP, P455
[10]  
YU S, 2008, APPL MATH COMPUT, P66