First order strong convergence of an explicit scheme for the stochastic SIS epidemic model

被引:24
作者
Chen, Lin [1 ,2 ]
Gan, Siqing [1 ]
Wang, Xiaojie [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Jiangxi Univ Finance & Econ, Sch Stat, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic SIS epidemic model; Explicit scheme; Strong first order convergence; EULER-MARUYAMA METHOD; MEAN-SQUARE CONVERGENCE; DIFFERENTIAL-EQUATIONS; SDES; STABILITY; RATES;
D O I
10.1016/j.cam.2021.113482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel explicit time-stepping scheme, called Lamperti smoothing truncation scheme, is devised in this paper to strongly approximate a stochastic SIS epidemic model, whose solution process takes values in a bounded domain and whose coefficients violate the global monotonicity condition. The proposed scheme is based on combining a Lamperti-type transformation with an explicit truncation method. The new scheme results in numerical approximations preserving the domain of the original SDEs and is proved to retain a mean-square convergence rate of order one. Numerical examples are finally reported to confirm our theoretical findings. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 29 条
[1]   Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process [J].
Alfonsi, Aurelien .
STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) :602-607
[2]   Mean-square convergence of the BDF2-Maruyama and backward Euler schemes for SDE satisfying a global monotonicity condition [J].
Andersson, Adam ;
Kruse, Raphael .
BIT NUMERICAL MATHEMATICS, 2017, 57 (01) :21-53
[3]   Stochastic C-Stability and B-Consistency of Explicit and Implicit Milstein-Type Schemes [J].
Beyn, Wolf-Juergen ;
Isaak, Elena ;
Kruse, Raphael .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (03) :1042-1077
[4]   Stochastic C-Stability and B-Consistency of Explicit and Implicit Euler-Type Schemes [J].
Beyn, Wolf-Juergen ;
Isaak, Elena ;
Kruse, Raphael .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (03) :955-987
[5]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[6]   An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients [J].
Chassagneux, Jean-Francois ;
Jacquier, Antoine ;
Mihaylov, Ivo .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2016, 7 (01) :993-1021
[7]   Tamed Runge-Kutta methods for SDEs with super-linearly growing drift and diffusion coefficients [J].
Gan, Siqing ;
He, Youzi ;
Wang, Xiaojie .
APPLIED NUMERICAL MATHEMATICS, 2020, 152 :379-402
[8]   A STOCHASTIC DIFFERENTIAL EQUATION SIS EPIDEMIC MODEL [J].
Gray, A. ;
Greenhalgh, D. ;
Hu, L. ;
Mao, X. ;
Pan, J. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (03) :876-902
[9]   The partially truncated Euler-Maruyama method and its stability and boundedness [J].
Guo, Qian ;
Liu, Wei ;
Mao, Xuerong ;
Yue, Rongxian .
APPLIED NUMERICAL MATHEMATICS, 2017, 115 :235-251
[10]   Strong convergence of Euler-type methods for nonlinear stochastic differential equations [J].
Higham, DJ ;
Mao, XR ;
Stuart, AM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) :1041-1063