Machine learning approaches for predicting household transportation energy use

被引:16
作者
Amiri, Shideh Shams [1 ]
Mostafavi, Nariman [1 ]
Lee, Earl Rusty [2 ]
Hoque, Simi [1 ]
机构
[1] Drexel Univ, Dept Civil Architectural & Environm Engn, Philadelphia, PA 19104 USA
[2] Univ Delaware, Dept Civil & Environm Engn, 308 DuPont Hall, Newark, DE USA
基金
美国国家科学基金会;
关键词
Transportation energy modeling; Household travel survey data; Machine learning; Random forest; Artificial neural network; ARTIFICIAL NEURAL-NETWORKS; TRAVEL BEHAVIOR; MODE CHOICE; URBAN FORM; RESIDENTIAL ENERGY; RANDOM FOREST; LAND-USE; CONSUMPTION; INTELLIGENCE;
D O I
10.1016/j.cacint.2020.100044
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents four modeling techniques for predicting household transportation energy consumption by exploring decision trees, random forest, and neural networks in addition to elastic net regularization analyses. The main objective of this study is to evaluate how effectively these advanced statistical models can be applicable to a Transportation Module (TM) operating within the Integrated Urban Metabolism Analysis Tool (IUMAT), a system-based computational platform for urban sustainability evaluation. The Delaware Valley Regional Planning Commission (DVRPC) travel demand model is used to estimate household transportation energy use based on household trip demand generation, travel mode, fuel type, distance and duration. The Household Travel Survey (HTS) and Traffic Analysis Zones (TAZ) drawn from the DVRPC database are used for model training. Our results indicate that machine learning algorithms, thanks to their ability to accommodate non-linearity, have significantly higher accuracy in predicting household transportation demand. We show that the Neural Network (NN) model out-performs the decision tree model, predicting transportation energy demand resulting in lower Mean Squared Error and a higher R-2. Using a Random Forest analysis for individual variable impact testing, we also demonstrate that the number of households' motorized trips and the travel distance are the most significant predictors of household transportation energy consumption.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Applications of Artificial Intelligence in Transport: An Overview [J].
Abduljabbar, Rusul ;
Dia, Hussein ;
Liyanage, Sohani ;
Bagloee, Saeed Asadi .
SUSTAINABILITY, 2019, 11 (01)
[2]   Development of transport mode choice model by using adaptive neuro-fuzzy inference system [J].
Andrade, Katia ;
Uchida, Kenetsu ;
Kagaya, Seiichi .
TRANSPORTATION RESEARCH RECORD-SERIES, 2006, (1977) :8-16
[3]  
[Anonymous], 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, DOI DOI 10.1007/978
[4]  
[Anonymous], 1993, C4
[5]   Empirical characterization of random forest variable importance measures [J].
Archer, Kelfie J. ;
Kirnes, Ryan V. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) :2249-2260
[6]   The influence of land use on travel behavior: specification and estimation strategies [J].
Boarnet, M ;
Crane, R .
TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2001, 35 (09) :823-845
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1007/BF00058655
[9]   Data driven prediction models of energy use of appliances in a low-energy house [J].
Candanedo, Luis M. ;
Feldheim, Veronique ;
Deramaix, Dominique .
ENERGY AND BUILDINGS, 2017, 140 :81-97
[10]   Multilayer feedforward networks for transportation mode choice analysis: An analysis and a comparison with random utility models [J].
Cantarella, GE ;
de Luca, S .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2005, 13 (02) :121-155