A Laplacian-based MMSE estimator for speech enhancement

被引:60
作者
Chen, Bin [1 ]
Loizou, Philipos C. [1 ]
机构
[1] Univ Texas Dallas, Dept Elect Engn, Richardson, TX 75083 USA
关键词
MMSE estimator; speech enhancement; Laplacian speech modeling; speech absence probability;
D O I
10.1016/j.specom.2006.12.005
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper focuses on optimal estimators of the magnitude spectrum for speech enhancement. We present an analytical solution for estimating in the MMSE sense the magnitude spectrum when the clean speech DFT coefficients are modeled by a Laplacian distribution and the noise DFT coefficients are modeled by a Gaussian distribution. Furthermore, we derive the MMSE estimator under speech presence uncertainty and a Laplacian statistical model. Results indicated that the Laplacian-based MMSE estimator yielded less residual noise in the enhanced speech than the traditional Gaussian-based MMSE estimator. Overall, the present study demonstrates that the assumed distribution of the DFT coefficients can have a significant effect on the quality of the enhanced speech. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 17 条
[1]  
BREITHAUPT C, 2003, P INT C AC SPEECH SI, V1, P896
[2]  
CHEN B, 2005, THESIS U TEXAS DALLA
[3]   Speech enhancement for non-stationary noise environments [J].
Cohen, I ;
Berdugo, B .
SIGNAL PROCESSING, 2001, 81 (11) :2403-2418
[4]   SPEECH ENHANCEMENT USING A MINIMUM MEAN-SQUARE ERROR LOG-SPECTRAL AMPLITUDE ESTIMATOR [J].
EPHRAIM, Y ;
MALAH, D .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (02) :443-445
[5]   SPEECH ENHANCEMENT USING A MINIMUM MEAN-SQUARE ERROR SHORT-TIME SPECTRAL AMPLITUDE ESTIMATOR [J].
EPHRAIM, Y ;
MALAH, D .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1984, 32 (06) :1109-1121
[6]  
Gradshteyn I. S., 2000, TABLE INTEGRALS SERI
[7]  
Hansen J.H. L., 1998, INT C SPEECH LANGUAG, V7, P2819
[8]  
HU Y, 2006, P INTERSPEECH PHIL P
[9]  
Kwon Y.W., 2000, The Finite Element Method Using Matlab, V2nd
[10]  
Lotter T., 2003, INT WORKSH AC ECH NO