Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 2: Assessing the influence of vapor wall losses

被引:51
作者
Cappa, Christopher D. [1 ]
Jathar, Shantanu H. [2 ]
Kleeman, Michael J. [1 ]
Docherty, Kenneth S. [3 ]
Jimenez, Jose L. [4 ,5 ]
Seinfeld, John H. [6 ,7 ]
Wexler, Anthony S. [1 ]
机构
[1] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
[2] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA
[3] Alion Sci & Technol, Res Triangle Pk, NC USA
[4] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA
[6] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[7] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
BASIS-SET APPROACH; ELEMENTAL COMPOSITION; ISOPRENE EPOXYDIOLS; VOLATILITY; MASS; GAS; EMISSIONS; CARBON; NOX; SOA;
D O I
10.5194/acp-16-3041-2016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The influence of losses of organic vapors to chamber walls during secondary organic aerosol (SOA) formation experiments has recently been established. Here, the influence of such losses on simulated ambient SOA concentrations and properties is assessed in the University of California at Davis / California Institute of Technology (UCD/CIT) regional air quality model using the statistical oxidation model (SOM) for SOA. The SOM was fit to laboratory chamber data both with and without accounting for vapor wall losses following the approach of Zhang et al. (2014). Two vapor wall-loss scenarios are considered when fitting of SOM to chamber data to determine best-fit SOM parameters, one with "low" and one with "high" vapor wall-loss rates to approximately account for the current range of uncertainty in this process. Simulations were run using these different parameterizations (scenarios) for both the southern California/South Coast Air Basin (SoCAB) and the eastern United States (US). Accounting for vapor wall losses leads to substantial increases in the simulated SOA concentrations from volatile organic compounds (VOCs) in both domains, by factors of similar to aEuro parts per thousand aEuro-2-5 for the low and similar to aEuro parts per thousand aEuro-5-10 for the high scenarios. The magnitude of the increase scales approximately inversely with the absolute SOA concentration of the no loss scenario. In SoCAB, the predicted SOA fraction of total organic aerosol (OA) increases from similar to aEuro parts per thousand aEuro-0.2 (no) to similar to aEuro parts per thousand aEuro-0.5 (low) and to similar to aEuro parts per thousand aEuro-0.7 (high), with the high vapor wall-loss simulations providing best general agreement with observations. In the eastern US, the SOA fraction is large in all cases but increases further when vapor wall losses are accounted for. The total OAaEuro-a center dot aEuro-Delta CO ratio captures the influence of dilution on SOA concentrations. The simulated OAaEuro-a center dot aEuro-Delta CO in SoCAB (specifically, at Riverside, CA) is found to increase substantially during the day only for the high vapor wall-loss scenario, which is consistent with observations and indicative of photochemical production of SOA. Simulated OaEuro-:aEuro-C atomic ratios for both SOA and for total OA increase when vapor wall losses are accounted for, while simulated HaEuro-:aEuro-C atomic ratios decrease. The agreement between simulations and observations of both the absolute values and the diurnal profile of the OaEuro-:aEuro-C and HaEuro-:aEuro-C atomic ratios for total OA was greatly improved when vapor wall-losses were accounted for. These results overall demonstrate that vapor wall losses in chambers have the potential to exert a large influence on simulated ambient SOA concentrations, and further suggest that accounting for such effects in models can explain a number of different observations and model-measurement discrepancies.
引用
收藏
页码:3041 / 3059
页数:19
相关论文
共 60 条
[1]  
[Anonymous], ATMOS CHEM PHYS DISC
[2]   Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield [J].
Baker, K. R. ;
Carlton, A. G. ;
Kleindienst, T. E. ;
Offenberg, J. H. ;
Beaver, M. R. ;
Gentner, D. R. ;
Goldstein, A. H. ;
Hayes, P. L. ;
Jimenez, J. L. ;
Gilman, J. B. ;
de Gouw, J. A. ;
Woody, M. C. ;
Pye, H. O. T. ;
Kelly, J. T. ;
Lewandowski, M. ;
Jaoui, M. ;
Stevens, P. S. ;
Brune, W. H. ;
Lin, Y. -H. ;
Rubitschun, C. L. ;
Surratt, J. D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (09) :5243-5258
[3]   Real-Time Continuous Characterization of Secondary Organic Aerosol Derived from Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using the Aerodyne Aerosol Chemical Speciation Monitor [J].
Budisulistiorini, Sri Hapsari ;
Canagaratna, Manjula R. ;
Croteau, Philip L. ;
Marth, Wendy J. ;
Baumann, Karsten ;
Edgerton, Eric S. ;
Shaw, Stephanie L. ;
Knipping, Eladio M. ;
Worsnop, Douglas R. ;
Jayne, John T. ;
Gold, Avram ;
Surratt, Jason D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (11) :5686-5694
[4]   Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications [J].
Canagaratna, M. R. ;
Jimenez, J. L. ;
Kroll, J. H. ;
Chen, Q. ;
Kessler, S. H. ;
Massoli, P. ;
Hildebrandt Ruiz, L. ;
Fortner, E. ;
Williams, L. R. ;
Wilson, K. R. ;
Surratt, J. D. ;
Donahue, N. M. ;
Jayne, J. T. ;
Worsnop, D. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (01) :253-272
[5]   Application of the Statistical Oxidation Model (SOM) to Secondary Organic Aerosol formation from photooxidation of C12 alkanes [J].
Cappa, C. D. ;
Zhang, X. ;
Loza, C. L. ;
Craven, J. S. ;
Yee, L. D. ;
Seinfeld, J. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (03) :1591-1606
[6]   Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol [J].
Cappa, C. D. ;
Wilson, K. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (20) :9505-9528
[7]   Model Representation of Secondary Organic Aerosol in CMAQv4.7 [J].
Carlton, Annmarie G. ;
Bhave, Prakash V. ;
Napelenok, Sergey L. ;
Edney, Edward D. ;
Sarwar, Golam ;
Pinder, Robert W. ;
Pouliot, George A. ;
Houyoux, Marc .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (22) :8553-8560
[8]   Elemental composition of organic aerosol: The gap between ambient and laboratory measurements [J].
Chen, Qi ;
Heald, Colette L. ;
Jimenez, Jose L. ;
Canagaratna, Manjula R. ;
Zhang, Qi ;
He, Ling-Yan ;
Huang, Xiao-Feng ;
Campuzano-Jost, Pedro ;
Palm, Brett B. ;
Poulain, Laurent ;
Kuwata, Mikinori ;
Martin, Scot T. ;
Abbatt, Jonathan P. D. ;
Lee, Alex K. Y. ;
Liggio, John .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (10) :4182-4189
[9]   Elemental composition and oxidation of chamber organic aerosol [J].
Chhabra, P. S. ;
Ng, N. L. ;
Canagaratna, M. R. ;
Corrigan, A. L. ;
Russell, L. M. ;
Worsnop, D. R. ;
Flagan, R. C. ;
Seinfeld, J. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (17) :8827-8845
[10]   Organic Aerosols in the Earth's Atmosphere [J].
De Gouw, Joost ;
Jimenez, Jose L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (20) :7614-7618