Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems

被引:41
作者
Burman, Erik [3 ]
Hansbo, Peter [1 ,2 ]
机构
[1] Chalmers, Dept Math Sci, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, S-41296 Gothenburg, Sweden
[3] Ecole Polytech Fed Lausanne, Inst Anal & Sci Comp, Stn 8, CH-1015 Lausanne, Switzerland
关键词
interface problem; non-matching grids; edge stabilization;
D O I
10.1093/imanum/drn081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a class of jump-stabilized Lagrange multiplier methods for the finite-element solution of multidomain elliptic partial differential equations using piecewise-constant or continuous piecewise-linear approximations of the multipliers. For the purpose of stabilization we use the jumps in derivatives of the multipliers or, for piecewise constants, the jump in the multipliers themselves, across element borders. The ideas are illustrated using Poisson's equation as a model, and the proposed method is shown to be stable and optimally convergent. Numerical experiments demonstrating the theoretical results are also presented.
引用
收藏
页码:870 / 885
页数:16
相关论文
共 8 条
[1]   BOUNDARY LAGRANGE MULTIPLIERS IN FINITE-ELEMENT METHODS - ERROR ANALYSIS IN NATURAL NORMS [J].
BARBOSA, HJC ;
HUGHES, TJR .
NUMERISCHE MATHEMATIK, 1992, 62 (01) :1-15
[2]   A finite element method for domain decomposition with non-matching grids [J].
Becker, R ;
Hansbo, P ;
Stenberg, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02) :209-225
[3]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[4]   Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems [J].
Burman, E ;
Hansbo, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (15-16) :1437-1453
[5]   A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes [J].
Hansbo, P ;
Lovadina, C ;
Perugia, I ;
Sangalli, G .
NUMERISCHE MATHEMATIK, 2005, 100 (01) :91-115
[6]  
Lions J.L, 1968, Problemes Aux Limites Non Homogenes
[7]  
Thomee V., 1997, GALERKIN FINITE ELEM
[8]  
Wohlmuth B.I., 2001, DISCRETIZATION METHO, V17, LNCS.