Translational AI and Deep Learning in Diagnostic Pathology

被引:156
作者
Serag, Ahmed [1 ]
Ion-Margineanu, Adrian [1 ]
Qureshi, Hammad [1 ]
McMillan, Ryan [1 ]
Saint Martin, Marie-Judith [1 ]
Diamond, Jim [1 ]
O'Reilly, Paul [1 ]
Hamilton, Peter [1 ]
机构
[1] Philips, Digital & Computat Pathol, Life Sci R&D Hub, Belfast, Antrim, North Ireland
关键词
pathology; digital pathology; artificial intelligence; computational pathology; image analysis; neural network; deep learning; machine learning; LOCALIZED PROSTATE-CANCER; BREAST-CANCER; ARTIFICIAL-INTELLIGENCE; NEURAL-NETWORKS; CELL DETECTION; IMAGE-ANALYSIS; SEGMENTATION; KI-67; CLASSIFICATION; PERCENTAGE;
D O I
10.3389/fmed.2019.00185
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
There has been an exponential growth in the application of AI in health and in pathology. This is resulting in the innovation of deep learning technologies that are specifically aimed at cellular imaging and practical applications that could transform diagnostic pathology. This paper reviews the different approaches to deep learning in pathology, the public grand challenges that have driven this innovation and a range of emerging applications in pathology. The translation of AI into clinical practice will require applications to be embedded seamlessly within digital pathology workflows, driving an integrated approach to diagnostics and providing pathologists with new tools that accelerate workflow and improve diagnostic consistency and reduce errors. The clearance of digital pathology for primary diagnosis in the US by some manufacturers provides the platform on which to deliver practical AI. AI and computational pathology will continue to mature as researchers, clinicians, industry, regulatory organizations and patient advocacy groups work together to innovate and deliver new technologies to health care providers: technologies which are better, faster, cheaper, more precise, and safe.
引用
收藏
页数:15
相关论文
共 116 条
[81]   The Inevitable Application of Big Data to Health Care [J].
Murdoch, Travis B. ;
Detsky, Allan S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2013, 309 (13) :1351-1352
[82]   Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer [J].
Nagpal, Kunal ;
Foote, Davis ;
Liu, Yun ;
Chen, Po-Hsuan Cameron ;
Wulczyn, Ellery ;
Tan, Fraser ;
Olson, Niels ;
Smith, Jenny L. ;
Mohtashamian, Arash ;
Wren, James H. ;
Corrado, Greg S. ;
MacDonald, Robert ;
Peng, Lily H. ;
Amin, Mahul B. ;
Evans, Andrew J. ;
Sangoi, Ankur R. ;
Mermel, Craig H. ;
Hipp, Jason D. ;
Stumpe, Martin C. .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[83]   BESNet: Boundary-Enhanced Segmentation of Cells in Histopathological Images [J].
Oda, Hirohisa ;
Roth, Holger R. ;
Chiba, Kosuke ;
Sokolic, Jure ;
Kitasaka, Takayuki ;
Oda, Masahiro ;
Hinoki, Akinari ;
Uchida, Hiroo ;
Schnabel, Julia A. ;
Mori, Kensaku .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :228-236
[84]  
Paeng K., 2016, UNIFIED FRAMEWORK TU
[85]   An international study to increase concordance in Ki67 scoring [J].
Polley, Mei-Yin C. ;
YLeung, Samuel C. ;
Gao, Dongxia ;
Mastropasqua, Mauro G. ;
Zabaglo, Lila A. ;
Bartlett, John M. S. ;
McShane, Lisa M. ;
Enos, Rebecca A. ;
Badve, Sunil S. ;
Bane, Anita L. ;
Borgquist, Signe ;
Fineberg, Susan ;
Lin, Ming-Gang ;
Gown, Allen M. ;
Grabau, Dorthe ;
Gutierrez, Carolina ;
Hugh, Judith C. ;
Moriya, Takuya ;
Ohi, Yasuyo ;
Osborne, C. Kent ;
Penault-Llorca, Frederique M. ;
Piper, Tammy ;
Porter, Peggy L. ;
Sakatani, Takashi ;
Salgado, Roberto ;
Starczynski, Jane ;
Laenkholm, Anne-Vibeke ;
Viale, Giuseppe ;
Dowsett, Mitch ;
Hayes, Daniel F. ;
Nielsen, Torsten O. .
MODERN PATHOLOGY, 2015, 28 (06) :778-786
[86]   An International Ki67 Reproducibility Study [J].
Polley, Mei-Yin C. ;
Leung, Samuel C. Y. ;
McShane, Lisa M. ;
Gao, Dongxia ;
Hugh, Judith C. ;
Mastropasqua, Mauro G. ;
Viale, Giuseppe ;
Zabaglo, Lila A. ;
Penault-Llorca, Frdrique ;
Bartlett, John M. S. ;
Gown, Allen M. ;
Symmans, W. Fraser ;
Piper, Tammy ;
Mehl, Erika ;
Enos, Rebecca A. ;
Hayes, Daniel F. ;
Dowsett, Mitch ;
Nielsen, Torsten O. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2013, 105 (24) :1897-1906
[87]  
Ratner Alexander J, 2017, Adv Neural Inf Process Syst, V30, P3239
[88]   The Pathologist Workforce in the United States II. An Interactive Modeling Tool for Analyzing Future Qualitative and Quantitative Staffing Demands for Services [J].
Robboy, Stanley J. ;
Gupta, Saurabh ;
Crawford, James M. ;
Cohen, Michael B. ;
Karcher, Donald S. ;
Leonard, Debra G. B. ;
Magnani, Barbarajean ;
Novis, David A. ;
Prystowsky, Michael B. ;
Powell, Suzanne Z. ;
Gross, David J. ;
Black-Schaffer, W. Stephen .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2015, 139 (11) :1413-1430
[89]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[90]  
Roux Ludovic, 2013, J Pathol Inform, V4, P8, DOI 10.4103/2153-3539.112693