Translational AI and Deep Learning in Diagnostic Pathology

被引:156
作者
Serag, Ahmed [1 ]
Ion-Margineanu, Adrian [1 ]
Qureshi, Hammad [1 ]
McMillan, Ryan [1 ]
Saint Martin, Marie-Judith [1 ]
Diamond, Jim [1 ]
O'Reilly, Paul [1 ]
Hamilton, Peter [1 ]
机构
[1] Philips, Digital & Computat Pathol, Life Sci R&D Hub, Belfast, Antrim, North Ireland
关键词
pathology; digital pathology; artificial intelligence; computational pathology; image analysis; neural network; deep learning; machine learning; LOCALIZED PROSTATE-CANCER; BREAST-CANCER; ARTIFICIAL-INTELLIGENCE; NEURAL-NETWORKS; CELL DETECTION; IMAGE-ANALYSIS; SEGMENTATION; KI-67; CLASSIFICATION; PERCENTAGE;
D O I
10.3389/fmed.2019.00185
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
There has been an exponential growth in the application of AI in health and in pathology. This is resulting in the innovation of deep learning technologies that are specifically aimed at cellular imaging and practical applications that could transform diagnostic pathology. This paper reviews the different approaches to deep learning in pathology, the public grand challenges that have driven this innovation and a range of emerging applications in pathology. The translation of AI into clinical practice will require applications to be embedded seamlessly within digital pathology workflows, driving an integrated approach to diagnostics and providing pathologists with new tools that accelerate workflow and improve diagnostic consistency and reduce errors. The clearance of digital pathology for primary diagnosis in the US by some manufacturers provides the platform on which to deliver practical AI. AI and computational pathology will continue to mature as researchers, clinicians, industry, regulatory organizations and patient advocacy groups work together to innovate and deliver new technologies to health care providers: technologies which are better, faster, cheaper, more precise, and safe.
引用
收藏
页数:15
相关论文
共 116 条
[51]   Automated comparison of protein subcellular location patterns between images of normal and cancerous tissues [J].
Glory, Estelle ;
Newberg, Justin ;
Murphy, Robert F. .
2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, :304-307
[52]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672, DOI DOI 10.1145/3422622
[53]   An application of machine learning to haematological diagnosis [J].
Guncar, Gregor ;
Kukar, Matjaz ;
Notar, Mateja ;
Brvar, Miran ;
Cernelc, Peter ;
Notar, Manca ;
Notar, Marko .
SCIENTIFIC REPORTS, 2018, 8
[54]  
Guo ZC, 2019, SCI REP-UK, V9, DOI [10.1038/s41598-018-37492-9, 10.1038/s41598-019-38952-6]
[55]  
Gurcan MN, 2010, LECT NOTES COMPUT SC, V6388, P226, DOI 10.1007/978-3-642-17711-8_23
[56]   Automated tumor analysis for molecular profiling in lung cancer [J].
Hamilton, Peter W. ;
Wang, Yinhai ;
Boyd, Clinton ;
James, Jacqueline A. ;
Loughrey, Maurice B. ;
Hougton, Joseph P. ;
Boyle, David P. ;
Kelly, Paul ;
Maxwell, Perry ;
McCleary, David ;
Diamond, James ;
McArt, Darragh G. ;
Tunstall, Jonathon ;
Bankhead, Peter ;
Salto-Tellez, Manuel .
ONCOTARGET, 2015, 6 (29) :27938-27952
[57]  
Han J, 2010, IEEE INT C BIO BIO W, P866, DOI 10.1109/BIBMW.2010.5703949
[58]   The molecular basis of breast cancer pathological phenotypes [J].
Heng, Yujing J. ;
Lester, Susan C. ;
Tse, Gary M. K. ;
Factor, Rachel E. ;
Allison, Kimberly H. ;
Collins, Laura C. ;
Chen, Yunn-Yi ;
Jensen, Kristin C. ;
Johnson, Nicole B. ;
Jeong, Jong Cheol ;
Punjabi, Rahi ;
Shin, Sandra J. ;
Singh, Kamaljeet ;
Krings, Gregor ;
Eberhard, David A. ;
Tan, Puay Hoon ;
Korski, Konstanty ;
Waldman, Frederic M. ;
Gutman, David A. ;
Sanders, Melinda ;
Reis-Filho, Jorge S. ;
Flanagan, Sydney R. ;
Gendoo, Deena M. A. ;
Chen, Gregory M. ;
Haibe-Kains, Benjamin ;
Ciriello, Giovanni ;
Hoadley, Katherine A. ;
Perou, Charles M. ;
Beck, Andrew H. .
JOURNAL OF PATHOLOGY, 2017, 241 (03) :375-391
[59]   Automated Tumour Recognition and Digital Pathology Scoring Unravels New Role for PD-L1 in Predicting Good Outcome in ER-/HER2+Breast Cancer [J].
Humphries, Matthew P. ;
Hynes, Sean ;
Bingham, Victoria ;
Cougot, Delphine ;
James, Jacqueline ;
Patel-Socha, Farah ;
Parkes, Eileen E. ;
Blayney, Jaine K. ;
O'Rorke, Michael A. ;
Irwin, Gareth W. ;
McArt, Darragh G. ;
Kennedy, Richard D. ;
Mullan, Paul B. ;
McQuaid, Stephen ;
Salto-Tellez, Manuel ;
Buckley, Niamh E. .
JOURNAL OF ONCOLOGY, 2018, 2018
[60]   Critical Appraisal of Programmed Death Ligand 1 Reflex Diagnostic Testing: Current Standards and Future Opportunities [J].
Humphries, Matthew P. ;
McQuaid, Stephen ;
Craig, Stephanie G. ;
Bingham, Victoria ;
Maxwell, Perry ;
Maurya, Manisha ;
McLean, Fiona ;
Sampson, James ;
Higgins, Patricia ;
Greene, Christine ;
James, Jacqueline ;
Salto-Tellez, Manuel .
JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (01) :45-53