Hyers-Ulam Stability of Functional Equation Deriving from Quadratic Mapping in Non-Archimedean (n, β)-Normed Spaces

被引:2
作者
Alessa, Nazek [1 ]
Tamilvanan, K. [2 ]
Loganathan, K. [3 ]
Selvi, K. Kalai [4 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Dept Math Sci, Riyadh, Saudi Arabia
[2] Govt Arts Coll Men, Dept Math, Krishnagiri 635001, Tamil Nadu, India
[3] Live4Research, Res & Dev Wing, Tiruppur 638106, Tamil Nadu, India
[4] SNS Coll Technol, Coimbatore, Tamil Nadu, India
关键词
APPROXIMATELY LINEAR MAPPINGS; RASSIAS STABILITY;
D O I
10.1155/2021/9953214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we have to introduce a generalized quadratic functional equation and derive its solution. The main objective of this work is to investigate the Hyers-Ulam stability of quadratic functional equation in non-Archimedean (n, beta)-normed spaces.
引用
收藏
页数:10
相关论文
共 40 条
  • [1] Fuzzy Stability Results of Finite Variable Additive Functional Equation: Direct and Fixed Point Methods
    Alanazi, Abdulaziz M.
    Muhiuddin, G.
    Tamilvanan, K.
    Alenze, Ebtehaj N.
    Ebaid, Abdelhalim
    Loganathan, K.
    [J]. MATHEMATICS, 2020, 8 (07)
  • [2] Orthogonal Stability and Nonstability of a Generalized Quartic Functional Equation in Quasi-β-Normed Spaces
    Alessa, Nazek
    Tamilvanan, K.
    Loganathan, K.
    Karthik, T. S.
    Rassias, John Michael
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [3] [Anonymous], 1991, International Journal of Mathematics and Mathematical Sciences, DOI 10.1155/S016117129100056X
  • [4] [Anonymous], 1994, DISCUSSIONES MATH
  • [5] Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI DOI 10.2969/JMSJ/00210064
  • [6] CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS
    BOURGIN, DG
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) : 223 - 237
  • [7] Cieplinski Krzysztof, 2012, ABSTRACT AND APPLIED ANALYSIS, DOI [10.1155/2012/716936, DOI 10.1155/2012/716936]
  • [8] ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES
    CZERWIK, S
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 : 59 - 64
  • [9] A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS
    GAVRUTA, P
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) : 431 - 436
  • [10] Gunawan H., 2001, Int. J. Math. Math. Sci., V27, P631, DOI DOI 10.1155/S0161171201010675