Hyers-Ulam Stability of Functional Equation Deriving from Quadratic Mapping in Non-Archimedean (n, β)-Normed Spaces

被引:2
作者
Alessa, Nazek [1 ]
Tamilvanan, K. [2 ]
Loganathan, K. [3 ]
Selvi, K. Kalai [4 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Dept Math Sci, Riyadh, Saudi Arabia
[2] Govt Arts Coll Men, Dept Math, Krishnagiri 635001, Tamil Nadu, India
[3] Live4Research, Res & Dev Wing, Tiruppur 638106, Tamil Nadu, India
[4] SNS Coll Technol, Coimbatore, Tamil Nadu, India
关键词
APPROXIMATELY LINEAR MAPPINGS; RASSIAS STABILITY;
D O I
10.1155/2021/9953214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we have to introduce a generalized quadratic functional equation and derive its solution. The main objective of this work is to investigate the Hyers-Ulam stability of quadratic functional equation in non-Archimedean (n, beta)-normed spaces.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Fuzzy Stability Results of Finite Variable Additive Functional Equation: Direct and Fixed Point Methods [J].
Alanazi, Abdulaziz M. ;
Muhiuddin, G. ;
Tamilvanan, K. ;
Alenze, Ebtehaj N. ;
Ebaid, Abdelhalim ;
Loganathan, K. .
MATHEMATICS, 2020, 8 (07)
[2]   Orthogonal Stability and Nonstability of a Generalized Quartic Functional Equation in Quasi-β-Normed Spaces [J].
Alessa, Nazek ;
Tamilvanan, K. ;
Loganathan, K. ;
Karthik, T. S. ;
Rassias, John Michael .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[3]  
[Anonymous], 1992, DISCUSS MATH
[4]  
[Anonymous], 1960, COLLECTION MATH PROB
[5]  
[Anonymous], 1994, DISCUSSIONES MATH
[6]  
[Anonymous], 2012, ABSTRACT APPL ANAL, DOI [10.1155/2012/716936, DOI 10.1155/2012/716936]
[7]  
Aoki T., 1950, J MATH SOC JPN, V2, P64, DOI [DOI 10.2969/JMSJ/00210064, 10.2969/jmsj/00210064]
[8]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[9]   ON THE STABILITY OF THE QUADRATIC MAPPING IN NORMED SPACES [J].
CZERWIK, S .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1992, 62 :59-64
[10]  
Gajda Z., 1991, Int. J. Math. Math. Sci, V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]