Crowdsourced mapping of unexplored target space of kinase inhibitors

被引:51
作者
Cichonska, Anna [1 ,2 ,3 ,10 ]
Ravikumar, Balaguru [1 ]
Allaway, Robert J. [4 ]
Wan, Fangping [5 ]
Park, Sungjoon [6 ]
Isayev, Olexandr [7 ]
Li, Shuya [5 ]
Mason, Michael [4 ]
Lamb, Andrew [4 ,6 ]
Tanoli, Ziaurrehman [1 ]
Jeon, Minji [6 ]
Kim, Sunkyu [6 ]
Popova, Mariya [7 ]
Capuzzi, Stephen [8 ]
Zeng, Jianyang [5 ]
Dang, Kristen [4 ]
Koytiger, Gregory [9 ]
Kang, Jaewoo [6 ]
Wells, Carrow I. [10 ]
Willson, Timothy M. [10 ]
Oprea, Tudor I. [11 ,12 ]
Schlessinger, Avner [13 ]
Drewry, David H. [10 ]
Stolovitzky, Gustavo [14 ]
Wennerberg, Krister [15 ]
Guinney, Justin [4 ]
Aittokallio, Tero [1 ,2 ,16 ,17 ,18 ]
Tan, Mehmet [19 ]
Huang, Chih-Han [20 ]
Shih, Edward S. C. [20 ]
Chen, Tsai-Min [20 ]
Wu, Chih-Hsun [20 ]
Fang, Wei-Quan [20 ]
Chen, Jhih-Yu [20 ]
Hwang, Ming-Jing [20 ]
Wang, Xiaokang [21 ]
Ben Guebila, Marouen [22 ]
Shamsaei, Behrouz [23 ]
Singh, Sourav [24 ]
Nguyen, Thin [25 ]
Karimi, Mostafa [26 ,27 ]
Wu, Di [26 ,28 ]
Wang, Zhangyang [29 ,30 ]
Shen, Yang [26 ]
Ozturk, Hakime [31 ]
Ozkirimli, Elif [32 ]
Ozgur, Arzucan [31 ]
Lim, Hansaim [33 ]
Xie, Lei [34 ]
Kanev, Georgi K. [35 ]
机构
[1] Univ Helsinki, Inst Mol Med Finland FIMM, Hi LIFE, Helsinki, Finland
[2] Aalto Univ, Helsinki Inst Informat Technol HIIT, Dept Comp Sci, Espoo, Finland
[3] Univ Turku, Dept Comp, Turku, Finland
[4] Sage Bionetworks, Computat Oncol, Seattle, WA 98195 USA
[5] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing, Peoples R China
[6] Korea Univ, Dept Comp Sci & Engn, Seoul, South Korea
[7] Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA
[8] Univ N Carolina, Lab Mol Modeling, Div Chem Biol & Med Chem, UNC Eshelman Sch Pharm, Chapel Hill, NC 27515 USA
[9] Immuneering Corp, Cambridge, MA USA
[10] Univ N Carolina, Struct Genom Consortium, UNC Eshelman Sch Pharm, Chapel Hill, NC 27515 USA
[11] Univ New Mexico, Sch Med, Translat Informat Div, Albuquerque, NM 87131 USA
[12] Univ New Mexico, Sch Med, Ctr Comprehens Canc, Albuquerque, NM 87131 USA
[13] Icahn Sch Med Mt Sinai, Dept Pharmacol Sci, New York, NY 10029 USA
[14] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY USA
[15] Univ Copenhagen, Biotech Res & Innovat Ctr BRIC, Copenhagen, Denmark
[16] Univ Turku, Dept Math & Stat, Turku, Finland
[17] Oslo Univ Hosp, Inst Canc Res, Oslo, Norway
[18] Univ Oslo, Oslo Ctr Biostat & Epidemiol OCBE, Oslo, Norway
[19] TOBB Univ Econ & Technol, Dept Comp Engn, Ankara, Turkey
[20] Acad Sinica, Inst Biomed Sci, Taipei, Taiwan
[21] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[22] Harvard Sch Publ Hlth, Dept Biostat, Boston, MA USA
[23] Univ Cincinnati, Coll Med, Dept Environm Hlth, Cincinnati, OH 45267 USA
[24] VIIT, Dept Comp Engn, Pune, Maharashtra, India
[25] Deakin Univ, Appl Artificial Intelligence Inst, Geelong, Vic, Australia
[26] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[27] Microsoft, One Microsoft Way, Redmond, WA USA
[28] Univ Penn, Philadelphia, PA 19104 USA
[29] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
[30] Univ Texas Austin, Austin, TX 78712 USA
[31] Bogazici Univ, Dept Comp Engn, Istanbul, Turkey
[32] Bogazici Univ, Dept Chem Engn, Istanbul, Turkey
[33] CUNY, Grad Ctr, Dept Biochem, New York, NY USA
[34] CUNY, Dept Comp Sci, Hunter Coll, New York, NY 10021 USA
[35] Canc Ctr Amsterdam CCA, Dept Neurosurg, Boelelaan 1117, Amsterdam, Netherlands
[36] Univ Copenhagen, Dept Drug Design & Pharmacol, Copenhagen, Denmark
[37] Natl Tech Univ Athens, BioSys Lab, Athens, Greece
[38] Univ Ghent, Dept Biotechnol, Ghent, Belgium
[39] Univ Ghent, Dept Data Anal & Math Modelling, Ghent, Belgium
[40] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[41] Tsinghua Univ, Sch Med, Beijing, Peoples R China
[42] Hacettepe Univ, Dept Comp & AI Engn, Ankara, Turkey
[43] METU, Dept Comp Engn, Ankara, Turkey
[44] METU, Grad Sch Informat, Dept Hlth Informat, KanSiL, Ankara, Turkey
[45] EMBL EBI, Cambridge, England
[46] Semmelweis Univ, Dept Physiol, Budapest, Hungary
[47] Max Planck Inst Mol Genet, Dept Computat Mol Biol, Berlin, Germany
[48] Univ Potsdam, Dept Comp Sci, Potsdam, Germany
[49] MicroDiscovery GmbH, Berlin, Germany
[50] Rudjer Boskovic Inst, Div Elect, Zagreb, Croatia
基金
美国国家卫生研究院; 英国惠康基金; 美国国家科学基金会; 加拿大创新基金会; 巴西圣保罗研究基金会; 芬兰科学院;
关键词
DRUG; PHARMACOLOGY; PREDICTION; DISCOVERY; PACKAGE;
D O I
10.1038/s41467-021-23165-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome. The IDG-DREAM Challenge carried out crowdsourced benchmarking of predictive algorithms for kinase inhibitor activities on unpublished data. This study provides a resource to compare emerging algorithms and prioritize new kinase activities to accelerate drug discovery and repurposing efforts.
引用
收藏
页数:18
相关论文
共 56 条
[51]   Applications of machine learning in drug discovery and development [J].
Vamathevan, Jessica ;
Clark, Dominic ;
Czodrowski, Paul ;
Dunham, Ian ;
Ferran, Edgardo ;
Lee, George ;
Li, Bin ;
Madabhushi, Anant ;
Shah, Parantu ;
Spitzer, Michaela ;
Zhao, Shanrong .
NATURE REVIEWS DRUG DISCOVERY, 2019, 18 (06) :463-477
[52]   Deep-Learning-Based Drug-Target Interaction Prediction [J].
Wen, Ming ;
Zhang, Zhimin ;
Niu, Shaoyu ;
Sha, Haozhi ;
Yang, Ruihan ;
Yun, Yonghuan ;
Lu, Hongmei .
JOURNAL OF PROTEOME RESEARCH, 2017, 16 (04) :1401-1409
[53]  
Wickham H., 2019, J OPEN SOURCE SOFTW, V4, P1686, DOI DOI 10.21105/JOSS.01686
[54]   Predicting drug-target interaction network using deep learning model [J].
You, Jiaying ;
McLeod, Robert D. ;
Hu, Pingzhao .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 80 :90-101
[55]   clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters [J].
Yu, Guangchuang ;
Wang, Li-Gen ;
Han, Yanyan ;
He, Qing-Yu .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2012, 16 (05) :284-287
[56]   The clinical development of MEK inhibitors [J].
Zhao, Yujie ;
Adjei, Alex A. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2014, 11 (07) :385-400