Temperature Sensitivity of Silicon Cantilevers with the Pull-in Instability Method

被引:2
作者
Sadeghian, Hamed [1 ]
Yang, Chung-Kai [1 ]
Goosen, Johannes F. L.
Bossche, Andre [1 ]
French, Paddy J. [1 ]
van Keulen, Fred
机构
[1] Delft Univ Technol, Elect Instrumentat Lab, NL-2628 CD Delft, Netherlands
来源
PROCEEDINGS OF THE EUROSENSORS XXIII CONFERENCE | 2009年 / 1卷 / 01期
关键词
Temperature sensitivity; Pull-in instability; Cantilever; Nanoelectromechanical systems; SWITCHES;
D O I
10.1016/j.proche.2009.07.346
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper the temperature effects on [110] Silicon cantilevers is analyzed and measured in the range of 25 -100 degrees C. The quasi-static electrostatic pull-in instability method developed recently for ultra-thin cantilevers ["Characterizing Size-dependent Effective Elastic Modulus of Silicon Nanocantilevers Using Electrostatic Pull-in Instability", Applied Physics Letters, Vol. 94(22), p. 221903, 2009] is employed to measure the temperature sensitivity of ultra-thin cantilevers. A temperature sensitivity of 81.3 degrees C/V is obtained. The temperature sensitivity is mostly due to the temperature dependence of the effective Young's Modulus of silicon. It is shown that changes in geometrical dimensions due to the change in temperature can be neglected. The changes in the effective Young's Modulus due to the changes in temperature are extracted using an electromechanical-coupled system. The pull-in method showed substantial advantages over other methods used for the study of the thermal effects on micron and sub-micron structures. The results demonstrate a new concept for a temperature sensor with ultra high sensitivity.
引用
收藏
页码:1387 / +
页数:2
相关论文
共 9 条
[1]   Temperature dependence of the force sensitivity of silicon cantilevers [J].
Gysin, U ;
Rast, S ;
Ruff, P ;
Meyer, E ;
Lee, DW ;
Vettiger, P ;
Gerber, C .
PHYSICAL REVIEW B, 2004, 69 (04)
[3]   Temperature-compensated high-stability silicon resonators [J].
Melamud, Renata ;
Kim, Bongsang ;
Chandorkar, Saurabh A. ;
Hopcroft, Matthew A. ;
Agarwal, Manu ;
Jha, Chandra M. ;
Kenny, Thomas W. .
APPLIED PHYSICS LETTERS, 2007, 90 (24)
[4]   Cooling a nanomechanical resonator with quantum back-action [J].
Naik, A. ;
Buu, O. ;
LaHaye, M. D. ;
Armour, A. D. ;
Clerk, A. A. ;
Blencowe, M. P. ;
Schwab, K. C. .
NATURE, 2006, 443 (7108) :193-196
[5]   A comprehensive model to study nonlinear behavior of multilayered micro beam switches [J].
Rezazadeh, Ghader .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2008, 14 (01) :135-141
[6]   Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability [J].
Sadeghian, H. ;
Yang, C. K. ;
Goosen, J. F. L. ;
van der Drift, E. ;
Bossche, A. ;
French, P. J. ;
van Keulen, F. .
APPLIED PHYSICS LETTERS, 2009, 94 (22)
[7]   Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches [J].
Sadeghian, Hamed ;
Rezazadeh, Ghader ;
Osterberg, Peter M. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2007, 16 (06) :1334-1340
[8]   Linear thermal expansion coefficient of silicon from 293 to 1000 K [J].
Watanabe, H ;
Yamada, N ;
Okaji, M .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2004, 25 (01) :221-236
[9]   Zeptogram-scale nanomechanical mass sensing [J].
Yang, YT ;
Callegari, C ;
Feng, XL ;
Ekinci, KL ;
Roukes, ML .
NANO LETTERS, 2006, 6 (04) :583-586