Tactile Sensing Using Machine Learning-Driven Electrical Impedance Tomography

被引:17
|
作者
Husain, Zainab [1 ]
Madjid, Nadya Abdel [1 ]
Liatsis, Panos [1 ]
机构
[1] Khalifa Univ Sci & Technol, Dept Elect Engn & Comp Sci, Abu Dhabi, U Arab Emirates
关键词
Sensors; Image reconstruction; Voltage measurement; Image segmentation; Shape; Object recognition; Conductivity; Electrical impedance tomography; tactile sensing; image reconstruction; segmentation; object recognition; IMAGE-RECONSTRUCTION; CONTACT IMPEDANCE; EIT; CLASSIFICATION; RECOGNITION; SEGMENTATION; SENSORS; IMPACT; TOUCH; SHAPE;
D O I
10.1109/JSEN.2021.3054870
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electrical Impedance Tomography (EIT) tactile sensors have limited success in equipping robots with tactile sensing capabilities due to the low spatial resolution of the resulting tactile images and the presence of image artifacts. To address these limitations, we propose a modular framework for invariant recognition of objects, within the context of an EIT artificial skin sensor. Three interconnected problems, i.e., EIT image reconstruction, segmentation and object recognition, are tackled in this work with the aid of machine learning. A novel conductivity surface decomposition approach, based on low order bivariate polynomials and RBF networks is introduced for the efficient solution of the EIT inverse problem. Next, segmentation of the reconstructed images is performed using a convolutional neural network and transfer learning. Finally, a subspace KNN ensemble classifier is trained on the set of object descriptors extracted from the segmented inhomogeneities to classify the objects. The proposed framework provides an accuracy of 97.5% on unseen data.
引用
收藏
页码:11628 / 11642
页数:15
相关论文
共 50 条
  • [21] Fabrication of a tactile sensor for artificial skin based on electrical impedance tomography
    Liu K.
    Qin Z.
    Wu Y.
    Chen B.
    Li F.
    Pan H.
    Yao J.
    Biosensors and Bioelectronics: X, 2022, 10
  • [22] Deep Learning-Driven Wavefront Sensing for Grating-Array-Based Wavefront Sensor
    Kumar, Nagendra
    Choudhury, Pranjal
    Buddha, S. S. Goutam
    IEEE SENSORS JOURNAL, 2025, 25 (03) : 4769 - 4776
  • [23] Classification of Hemorrhage Using Priori Information of Electrode Arrangement With Electrical Impedance Tomography
    Tian, Zhiwei
    Shi, Yanyan
    Wang, Can
    Wang, Meng
    Shen, Ke
    IEEE ACCESS, 2023, 11 : 31355 - 31364
  • [24] Classification of Electrical Impedance Tomography Data Using Machine Learning
    Pessoa, Diogo
    Rocha, Bruno Machado
    Cheimariotis, Grigorios-Aris
    Haris, Kostas
    Strodthoff, Claas
    Kaimakamis, Evangelos
    Maglaveras, Nicos
    Frerichs, Inez
    de Carvalho, Paulo
    Paiva, Rui Pedro
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 349 - 353
  • [25] Finite element modeling of the electrical impedance tomography technique driven by machine learning
    Elkhodbia, Mohamed
    Barsoum, Imad
    Korkees, Feras
    Bojanampati, Shrinivas
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2023, 223
  • [26] A Two-Stage Deep Learning Method for Robust Shape Reconstruction With Electrical Impedance Tomography
    Ren, Shangjie
    Sun, Kai
    Tan, Chao
    Dong, Feng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (07) : 4887 - 4897
  • [27] Deep learning-driven feature engineering for lung disease classification through electrical impedance tomography imaging
    Cansiz, Berke
    Kilinc, Coskuvar Utkan
    Serbes, Gorkem
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [28] Image Reconstruction Using Supervised Learning in Wearable Electrical Impedance Tomography of the Thorax
    Ivanenko, Mikhail
    Smolik, Waldemar T.
    Wanta, Damian
    Midura, Mateusz
    Wroblewski, Przemyslaw
    Hou, Xiaohan
    Yan, Xiaoheng
    SENSORS, 2023, 23 (18)
  • [29] Deep Learning Scheme PSPNet for Electrical Impedance Tomography
    Wang, Peng
    Chen, Haofeng
    Ma, Gang
    Li, Rui
    Wang, Xiaojie
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2021, 2021, 11591
  • [30] Supervised Descent Learning for Thoracic Electrical Impedance Tomography
    Zhang, Ke
    Guo, Rui
    Li, Maokun
    Yang, Fan
    Xu, Shenheng
    Abubakar, Aria
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (04) : 1360 - 1369