Memristors Based on (Zr, Hf, Nb, Ta, Mo, W) High-Entropy Oxides

被引:39
作者
Ahn, Minhyung [1 ]
Park, Yongmo [1 ]
Lee, Seung Hwan [1 ]
Chae, Sieun [2 ]
Lee, Jihang [2 ]
Heron, John T. [2 ]
Kioupakis, Emmanouil [2 ]
Lu, Wei D. [1 ]
Phillips, Jamie D. [1 ,3 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, 1301 Beal Ave, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mat Sci & Engn, 2300 Hayward St, Ann Arbor, MI 48109 USA
[3] Univ Delaware, Dept Elect & Comp Engn, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
first‐ principles calculations; high‐ entropy oxides; memristors; neuromorphic computing; pulsed laser deposition; MOLECULAR-DYNAMICS; HARDWARE; DEVICES; ALLOYS;
D O I
10.1002/aelm.202001258
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Memristors have emerged as transformative devices to enable neuromorphic and in-memory computing, where success requires the identification and development of materials that can overcome challenges in retention and device variability. Here, high-entropy oxide composed of Zr, Hf, Nb, Ta, Mo, and W oxides is first demonstrated as a switching material for valence change memory. This multielement oxide material provides uniform distribution and higher concentration of oxygen vacancies, limiting the stochastic behavior in resistive switching. (Zr, Hf, Nb, Ta, Mo, W) high-entropy-oxide-based memristors manifest the "cocktail effect," exhibiting comparable retention with HfO2- or Ta2O5-based memristors while also demonstrating the gradual conductance modulation observed in WO3-based memristors. The electrical characterization of these high-entropy-oxide-based memristors demonstrates forming-free operation, low device and cycle variability, gradual conductance modulation, 6-bit operation, and long retention which are promising for neuromorphic applications.
引用
收藏
页数:8
相关论文
共 57 条
[1]   Challenges hindering memristive neuromorphic hardware from going mainstream [J].
Adam, Gina C. ;
Khiat, Ali ;
Prodromakis, Themis .
NATURE COMMUNICATIONS, 2018, 9
[2]  
[Anonymous], 2003, J CHEM PHYS, DOI [DOI 10.1063/1.1564060, 10.1063/1.1564060]
[3]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[4]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations [J].
Cai, Fuxi ;
Correll, Justin M. ;
Lee, Seung Hwan ;
Lim, Yong ;
Bothra, Vishishtha ;
Zhang, Zhengya ;
Flynn, Michael P. ;
Lu, Wei D. .
NATURE ELECTRONICS, 2019, 2 (07) :290-299
[7]   A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit [J].
Chakrabarti, B. ;
Lastras-Montano, M. A. ;
Adam, G. ;
Prezioso, M. ;
Hoskins, B. ;
Cheng, K. -T. ;
Strukov, D. B. .
SCIENTIFIC REPORTS, 2017, 7
[8]   Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor [J].
Chang, Ting ;
Jo, Sung-Hyun ;
Lu, Wei .
ACS NANO, 2011, 5 (09) :7669-7676
[9]   A review of emerging non-volatile memory (NVM) technologies and applications [J].
Chen, An .
SOLID-STATE ELECTRONICS, 2016, 125 :25-38
[10]  
Chen Y., 2020, IEEE T ELECTRON DEV, V67, P1420, DOI DOI 10.1109/TED.2019.2961505