共 49 条
Experimental investigation of enhanced carbonation by solvent extraction for indirect CO2 mineral sequestration
被引:10
作者:
Bao, Weijun
[1
]
Li, Huiquan
[1
]
Zhang, Yi
机构:
[1] Chinese Acad Sci, Inst Proc Engn, Beijing 100080, Peoples R China
基金:
中国国家自然科学基金;
国家高技术研究发展计划(863计划);
关键词:
indirect CO2 mineral sequestration;
tributyl phosphate (TBP);
acetic acid;
aragonite;
coupled reactive crystallization and solvent extraction;
PRECIPITATED CALCIUM-CARBONATE;
HIGH-PRESSURES;
ACETIC-ACID;
DISSOLUTION;
ACETATE;
SOLUBILITY;
KINETICS;
DIOXIDE;
CACO3;
WATER;
D O I:
10.1002/ghg.1440
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
An indirect CO2 mineral sequestration involving two separated steps with acetic acid as a recycling medium provides a promising method for CO2 sequestration as well as the minimum CO2 emission for calcium carbonate production. In such an indirect route, the calcium carbonate production in the second gas-liquid reactive crystallization step has been challenged by low carbonation efficiency. This paper describes significant enhancement of the second step by coupling reactive crystallization and solvent extraction with the introduction of the organic solvent, tributyl phosphate (TBP), to the process. Based on the reaction mechanism of this enhanced carbonation process, many influencing factors including stirring speed, phase ratio, reaction time, reaction temperature, CO2 partial pressure, and the composition of the initial aqueous solution, were studied. Given the operating conditions of 60 min reaction time, 500 rpm stirring speed, organic-to-aqueous phase volume ratio of 1, 80 degrees C reaction temperature, 4.0 MPa CO2 partial pressure, and initial pH of 7, the obtained crystallization conversion in the second step was found to increase from 20% to above 50%, with the incorporation of TBP and the addition of magnesium acetate. (C) 2014 Society of Chemical Industry and John Wiley & Sons, Ltd
引用
收藏
页码:785 / 799
页数:15
相关论文