Solutions of semiclassical states for perturbed p-Laplacian equation with critical exponent

被引:2
作者
Wang, Jixiu [1 ]
Wang, Li [2 ]
Zhang, Dandan [1 ]
机构
[1] Hubei Univ Arts & Sci, Sch Math & Comp Sci, Xiangyang 441053, Peoples R China
[2] East China Jiaotong Univ, Sch Basic Sci, Nanchang 330013, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2014年
关键词
semiclassical states; positive solutions; critical exponent; LINEAR SCHRODINGER-EQUATIONS; SOLITON-SOLUTIONS; BOUND-STATES; EXISTENCE; PLASMA;
D O I
10.1186/s13661-014-0243-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study semiclassical states for perturbed p-Laplacian equations. Under some given conditions and minimax methods, we show that this problem has at least one positive solution provided that ; for any , it has m pairs of solutions if , where a"degrees, are sufficiently small positive numbers. Moreover, these solutions in as .
引用
收藏
页数:22
相关论文
共 40 条
  • [1] Alves CO, 2006, DIFFER INTEGRAL EQU, V19, P143
  • [2] Semiclassical states of nonlinear Schrodinger equations
    Ambrosetti, A
    Badiale, M
    Cingolani, S
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) : 285 - 300
  • [3] [Anonymous], 1986, EXPO MATH
  • [4] [Anonymous], 1997, Adv. Diff. Equats
  • [5] [Anonymous], 2004, Abstr Appl Anal, DOI DOI 10.1155/S1085337504310018
  • [6] [Anonymous], 2000, Adv. Differ. Equ
  • [7] NONLINEAR ELECTROMAGNETIC-SPIN WAVES
    BASS, FG
    NASONOV, NN
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 189 (04): : 165 - 223
  • [8] ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES
    BENCI, V
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) : 533 - 572
  • [9] Soliton solutions for quasilinear Schrodinger equations with critical growth
    Bezerra do O, Joao M.
    Miyagaki, Olimpio H.
    Soares, Sergio H. M.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) : 722 - 744
  • [10] RELATIVISTIC AND PONDEROMOTIVE SELF-FOCUSING OF A LASER-BEAM IN A RADIALLY INHOMOGENEOUS-PLASMA .1. PARAXIAL APPROXIMATION
    BRANDI, HS
    MANUS, C
    MAINFRAY, G
    LEHNER, T
    BONNAUD, G
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (10): : 3539 - 3550