Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery

被引:684
作者
Forgez, Christophe [1 ]
Do, Dinh Vinh [1 ]
Friedrich, Guy [1 ]
Morcrette, Mathieu [2 ]
Delacourt, Charles [2 ]
机构
[1] Univ Technol Compiegne, EA 1006, Lab Electromecan Compiegne, F-60205 Compiegne, France
[2] Univ Picardie Jules Verne, Lab React & Chim Solides, UMR 6007, F-80039 Amiens, France
关键词
Li-ion battery; Thermal modeling; Temperature; Heat source; ENTROPY;
D O I
10.1016/j.jpowsour.2009.10.105
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A lumped-parameter thermal model of a cylindrical LiFePO4/graphite lithium-ion battery is developed. Heat transfer coefficients and heat capacity are determined from simultaneous measurements of the surface temperature and the internal temperature of the battery while applying 2 Hz current pulses of different magnitudes. For internal temperature measurements, a thermocouple is introduced into the battery under inert atmosphere. Heat transfer coefficients (thermal resistances in the model) inside and outside the battery are obtained from thermal steady state temperature measurements, whereas the heat capacity (thermal capacitance in the model) is determined from the transient part. The accuracy of the estimation of internal temperature from surface temperature measurements using the model is validated on current-pulse experiments and a complete charge/discharge of the battery and is within 1.5 degrees C. Furthermore. the model allows for simulating the internal temperature directly from the measured current and voltage of the battery. The model is simple enough to be implemented in battery management systems for electric vehicles. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2961 / 2968
页数:8
相关论文
共 12 条
[1]   Thermal modeling and design considerations of lithium-ion batteries [J].
Al Hallaj, S ;
Maleki, H ;
Hong, JS ;
Selman, JR .
JOURNAL OF POWER SOURCES, 1999, 83 (1-2) :1-8
[2]  
[Anonymous], 1998, ANAL TRANSPORT PHENO
[3]   Thermal impedance spectroscopy for Li-ion batteries using heat-pulse response analysis [J].
Barsoukov, E ;
Jang, JH ;
Lee, H .
JOURNAL OF POWER SOURCES, 2002, 109 (02) :313-320
[4]  
Bergveld HJ., 2002, PHIL RES, V1, DOI 10.1007/978-94-017-0843-2
[5]   Modeling heat conduction in spiral geometries [J].
Gomadam, PM ;
White, RE ;
Weidner, JW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1339-A1345
[6]   Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation [J].
Khateeb, SA ;
Amiruddin, S ;
Farid, M ;
Selman, JR ;
Al-Hallaj, S .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :345-353
[7]   A three-dimensional thermal abuse model for lithium-ion cells [J].
Kim, Gi-Heon ;
Pesaran, Ahmad ;
Spotnitz, Robert .
JOURNAL OF POWER SOURCES, 2007, 170 (02) :476-489
[8]   The entropy and enthalpy of lithium intercalation into graphite [J].
Reynier, Y ;
Yazami, R ;
Fultz, B .
JOURNAL OF POWER SOURCES, 2003, 119 :850-855
[9]   Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles [J].
Smith, Kandler ;
Wang, Chao-Yang .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :662-673
[10]   Thermal modeling of porous insertion electrodes [J].
Thomas, KE ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (02) :A176-A192