Orthogonal Elements in Nonseparable Rearrangement Invariant Spaces

被引:0
作者
Astashkin, S., V [1 ]
Semenov, E. M. [2 ]
机构
[1] Samara Natl Res Univ, Samara 443086, Russia
[2] Voronezh State Univ, Voronezh 394006, Russia
基金
俄罗斯基础研究基金会;
关键词
nonseparable Banach space; rearrangement invariant space; Orlicz space; Marcinkiewicz space; orthogonal elements;
D O I
10.1134/S1064562420060058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a nonseparable rearrangement invariant space, and let E-0 denote the closure of the set of all bounded functions in E. We study elements of E orthogonal to the subspace E-0, i.e., elements x is an element of E such that parallel to x parallel to(E) <= parallel to x + y parallel to(E) for any y is an element of E-0.
引用
收藏
页码:449 / 450
页数:2
相关论文
共 5 条
  • [1] On a Property of Rearrangement Invariant Spaces whose Second Kothe Dual is Nonseparable
    Astashkin, S. V.
    Semenov, E. M.
    [J]. MATHEMATICAL NOTES, 2020, 107 (1-2) : 10 - 19
  • [2] Krasnosel'skii M.A., 1958, Convex functions and Orlics spaces
  • [3] Krein SG, 1978, INTERPOLATION LINEAR
  • [4] Lindenstrauss J., 1979, Classical Banach spaces. II
  • [5] Rao MM., 1991, Theory of Orlicz Spaces