A non-linear model for the dynamics of an inclined cable

被引:62
作者
Berlioz, A
Lamarque, CH
机构
[1] Inst Natl Sci Appl, Lab Dynam Machines & Struct, UMR5006, F-69621 Villeurbanne, France
[2] Ecole Natl Travaux Publ Etat, Lab GeoMat, URA 1652, F-69518 Vaulx En Velin, France
关键词
D O I
10.1016/j.jsv.2003.11.069
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This article is devoted to the theoretical and experimental investigations of an inclined cable subjected to the boundary motion condition. A model is presented for predicting non-linear behaviour. The analysis of basic phenomena is performed using the multiple scales method. The cable is modelled with one or two degrees of freedom for in-plane displacement. Models with one or two degrees of freedom are used for out-of-plane displacements. Experiments are carried out on the mechanical model and served to identify parameters and validate the one-degree of freedom model for in-plane displacements. Numerical and experimental results are in good agreement. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:619 / 639
页数:21
相关论文
共 32 条
[1]  
Achkire Y., 1997, THESIS U LIBRE BRUXE
[2]   NONLINEAR OSCILLATIONS OF A 4-DEGREE-OF-FREEDOM MODEL OF A SUSPENDED CABLE UNDER MULTIPLE INTERNAL RESONANCE CONDITIONS [J].
BENEDETTINI, F ;
REGA, G ;
ALAGGIO, R .
JOURNAL OF SOUND AND VIBRATION, 1995, 182 (05) :775-797
[3]   NONLINEAR DYNAMICS OF AN ELASTIC CABLE UNDER PLANAR EXCITATION [J].
BENEDETTINI, F ;
REGA, G .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1987, 22 (06) :497-509
[4]  
BENEDETTINI F, 1989, J SOUND VIB, V132, P353, DOI 10.1016/0022-460X(89)90630-5
[5]  
BERLIOZ A, 2001, P ASME DETC2001
[6]   STUDY OF AN HYPERBOLIC MODEL OF VIBRATING CABLES [J].
CARASSO, C ;
RASCLE, M ;
SERRE, D .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04) :573-599
[7]   ON THE NON-LINEAR VIBRATION PROBLEM OF THE ELASTIC STRING [J].
CARRIER, GF .
QUARTERLY OF APPLIED MATHEMATICS, 1945, 3 (02) :157-165
[8]   A NOTE ON THE VIBRATING STRING [J].
CARRIER, GF .
QUARTERLY OF APPLIED MATHEMATICS, 1949, 7 (01) :97-101
[9]   A non-linear eigenvalue problem associated with inextensible whirling strings [J].
Coomer, J ;
Lazarus, M ;
Tucker, RW ;
Kershaw, D ;
Tegman, A .
JOURNAL OF SOUND AND VIBRATION, 2001, 239 (05) :969-982
[10]  
Fujino Y., 1993, NONLINEAR DYNAM, V4, P24, DOI DOI 10.1007/BF00045250)