Contextual connectivity: A framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks

被引:38
作者
Ciric, Rastko [1 ]
Nomi, Jason S. [2 ]
Uddin, Lucina Q. [2 ]
Satpute, Ajay B. [1 ,3 ]
机构
[1] Pomona Coll, Dept Neurosci, Claremont, CA 91711 USA
[2] Univ Miami, Dept Psychol, POB 248185, Coral Gables, FL 33124 USA
[3] Pomona Coll, Dept Psychol, Claremont, CA 91711 USA
关键词
INDEPENDENT COMPONENT ANALYSIS; RESTING-STATE NETWORKS; DEFAULT MODE NETWORK; ORGANIZATION; HUBS; SCHIZOPHRENIA; INDIVIDUALS; ACTIVATION; COGNITION; ARTIFACT;
D O I
10.1038/s41598-017-06866-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Investigations of the human brain's connectomic architecture have produced two alternative models: one describes the brain's spatial structure in terms of static localized networks, and the other describes the brain's temporal structure in terms of dynamic whole-brain states. Here, we used tools from connectivity dynamics to develop a synthesis that bridges these models. Using resting fMRI data, we investigated the assumptions undergirding current models of the human connectome. Consistent with state-based models, our results suggest that static localized networks are superordinate approximations of underlying dynamic states. Furthermore, each of these localized, dynamic connectivity states is associated with global changes in the whole-brain functional connectome. By nesting localized dynamic connectivity states within their whole-brain contexts, we demonstrate the relative temporal independence of brain networks. Our assay for functional autonomy of coordinated neural systems is broadly applicable, and our findings provide evidence of structure in temporal state dynamics that complements the well-described static spatial organization of the brain.
引用
收藏
页数:16
相关论文
共 85 条
[1]   The Effect of Model Order Selection in Group PICA [J].
Abou-Elseoud, Ahmed ;
Starck, Tuomo ;
Remes, Jukka ;
Nikkinen, Juha ;
Tervonen, Osmo ;
Kiviniemi, Vesa .
HUMAN BRAIN MAPPING, 2010, 31 (08) :1207-1216
[2]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[3]   The Brain's Default Network and Its Adaptive Role in Internal Mentation [J].
Andrews-Hanna, Jessica R. .
NEUROSCIENTIST, 2012, 18 (03) :251-270
[4]   Functional-Anatomic Fractionation of the Brain's Default Network [J].
Andrews-Hanna, Jessica R. ;
Reidler, Jay S. ;
Sepulcre, Jorge ;
Poulin, Renee ;
Buckner, Randy L. .
NEURON, 2010, 65 (04) :550-562
[5]   Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain [J].
Barrett, Lisa Feldman ;
Satpute, Ajay Bhaskar .
CURRENT OPINION IN NEUROBIOLOGY, 2013, 23 (03) :361-372
[6]   Learning-induced autonomy of sensorimotor systems [J].
Bassett, Danielle S. ;
Yang, Muzhi ;
Wymbs, Nicholas F. ;
Grafton, Scott T. .
NATURE NEUROSCIENCE, 2015, 18 (05) :744-+
[7]   Task-Based Core-Periphery Organization of Human Brain Dynamics [J].
Bassett, Danielle S. ;
Wymbs, Nicholas F. ;
Rombach, M. Puck ;
Porter, Mason A. ;
Mucha, Peter J. ;
Grafton, Scott T. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
[8]  
Battaglia D., 2016, ORG HUMAN BRAIN MAPP, V3939
[9]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[10]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159