Integrative Cancer Pharmacogenomics to Infer Large-Scale Drug Taxonomy

被引:26
|
作者
El-Hachem, Nehme [1 ,2 ]
Gendoo, Deena M. A. [3 ,4 ]
Ghoraie, Laleh Soltan [3 ,4 ]
Safikhani, Zhaleh [3 ,4 ]
Smirnov, Petr [3 ]
Chung, Christina [5 ]
Deng, Kenan [5 ]
Fang, Ailsa [5 ]
Birkwood, Erin [6 ]
Ho, Chantal [5 ]
Isserlin, Ruth [5 ]
Bader, Gary D. [5 ,7 ,8 ]
Goldenberg, Anna [5 ,9 ]
Haibe-Kains, Benjamin [3 ,4 ,5 ,10 ]
机构
[1] Inst Recherches Clin Montreal, Integrat Computat Syst Biol, Montreal, PQ, Canada
[2] Univ Montreal, Dept Biomed Sci, Montreal, PQ, Canada
[3] Univ Hlth Network, Princess Margaret Canc Ctr, Res Tower,11-310,101 Coll St, Toronto, ON M5G 1L7, Canada
[4] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[5] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[6] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[7] Donnelly Ctr, Toronto, ON, Canada
[8] Mt Sinai Hosp, Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
[9] Hosp Sick Children, Toronto, ON, Canada
[10] Ontario Inst Canc Res, Toronto, ON, Canada
基金
加拿大健康研究院;
关键词
GENE-EXPRESSION SIGNATURES; BIG DATA; IDENTIFICATION; SENSITIVITY; SIMILARITY; MODELS; CELLS; CONNECTIVITY; INHIBITION; PREDICTION;
D O I
10.1158/0008-5472.CAN-17-0096
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Identification of drug targets and mechanism of action (MoA) for new and uncharacterized anticancer drugs is important for optimization of treatment efficacy. Current MoA prediction largely relies on prior information including side effects, therapeutic indication, and chemoinformatics. Such information is not transferable or applicable for newly identified, previously uncharacterized small molecules. Therefore, a shift in the paradigm of MoA predictions is necessary toward development of unbiased approaches that can elucidate drug relationships and efficiently classify new compounds with basic input data. We propose here a new integrative computational pharmacogenomic approach, referred to as Drug Network Fusion (DNF), to infer scalable drug taxonomies that rely only on basic drug characteristics toward elucidating drug-drug relationships. DNF is the first framework to integrate drug structural information, high-throughput drug perturbation, and drug sensitivity profiles, enabling drug classification of new experimental compounds with minimal prior information. DNF taxonomy succeeded in identifying pertinent and novel drug-drug relationships, making it suitable for investigating experimental drugs with potential new targets or MoA. The scalability of DNF facilitated identification of key drug relationships across different drug categories, providing a flexible tool for potential clinical applications in precision medicine. Our results support DNF as a valuable resource to the cancer research community by providing new hypotheses on compound MoA and potential insights for drug repurposing. (C) 2017 AACR.
引用
收藏
页码:3057 / 3069
页数:13
相关论文
共 50 条
  • [41] Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening
    Sun, Ning
    Petiwala, Sakina
    Wang, Rui
    Lu, Charles
    Hu, Mufeng
    Ghosh, Sujana
    Hao, Yan
    Miller, Christopher P.
    Chung, Namjin
    BMC GENOMICS, 2019, 20 (1)
  • [42] Epigenetic landscape of drug responses revealed through large-scale ChIP-seq data analyses
    Zou, Zhaonan
    Iwata, Michio
    Yamanishi, Yoshihiro
    Oki, Shinya
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [43] Large-scale comparison of machine learning methods for drug target prediction on ChEMBL
    Mayr, Andreas
    Klambauer, Guenter
    Unterthiner, Thomas
    Steijaert, Marvin
    Wegner, Jorg K.
    Ceulemans, Hugo
    Clevert, Djork-Arne
    Hochreiter, Sepp
    CHEMICAL SCIENCE, 2018, 9 (24) : 5441 - 5451
  • [44] Large-scale analysis of chromosomal aberrations in cancer karyotypes reveals two distinct paths to aneuploidy
    Ozery-Flato, Michal
    Linhart, Chaim
    Trakhtenbrot, Luba
    Izraeli, Shai
    Shamir, Ron
    GENOME BIOLOGY, 2011, 12 (06):
  • [45] HUME: large-scale detection of causal genetic factors of adverse drug reactions
    Mansouri, Mehrdad
    Yuan, Bowei
    Ross, Colin J. D.
    Carleton, Bruce C.
    Ester, Martin
    BIOINFORMATICS, 2018, 34 (24) : 4274 - 4283
  • [46] Large-Scale Prediction of Drug-Target Interactions from Deep Representations
    Hu, Peng-Wei
    Chan, Keith C. C.
    You, Zhu-Hong
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1236 - 1243
  • [47] Large-scale prediction of drug-target interactions using protein sequences and drug topological structures
    Cao, Dong-Sheng
    Liu, Shao
    Xu, Qing-Song
    Lu, Hong-Mei
    Huang, Jian-Hua
    Hu, Qian-Nan
    Liang, Yi-Zeng
    ANALYTICA CHIMICA ACTA, 2012, 752 : 1 - 10
  • [48] Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics
    Lam, Max
    Chen, Chia-Yen
    Ge, Tian
    Xia, Yan
    Hill, David W.
    Trampush, Joey W.
    Yu, Jin
    Knowles, Emma
    Davies, Gail
    Stahl, Eli A.
    Huckins, Laura
    Liewald, David C.
    Djurovic, Srdjan
    Melle, Ingrid
    Christoforou, Andrea
    Reinvang, Ivar
    DeRosse, Pamela
    Lundervold, Astri J.
    Steen, Vidar M.
    Espeseth, Thomas
    Raikkonen, Katri
    Widen, Elisabeth
    Palotie, Aarno
    Eriksson, Johan G.
    Giegling, Ina
    Konte, Bettina
    Hartmann, Annette M.
    Roussos, Panos
    Giakoumaki, Stella
    Burdick, Katherine E.
    Payton, Antony
    Ollier, William
    Chiba-Falek, Ornit
    Koltai, Deborah C.
    Need, Anna C.
    Cirulli, Elizabeth T.
    Voineskos, Aristotle N.
    Stefanis, Nikos C.
    Avramopoulos, Dimitrios
    Hatzimanolis, Alex
    Smyrnis, Nikolaos
    Bilder, Robert M.
    Freimer, Nelson B.
    Cannon, Tyrone D.
    London, Edythe
    Poldrack, Russell A.
    Sabb, Fred W.
    Congdon, Eliza
    Conley, Emily Drabant
    Scult, Matthew A.
    NEUROPSYCHOPHARMACOLOGY, 2021, 46 (10) : 1788 - 1801
  • [49] Systematic Interpretation of Comutated Genes in Large-Scale Cancer Mutation Profiles
    Gu, Yunyan
    Yang, Da
    Zou, Jinfeng
    Ma, Wencai
    Wu, Ruihong
    Zhao, Wenyuan
    Zhang, Yuannv
    Xiao, Hui
    Gong, Xue
    Zhang, Min
    Zhu, Jing
    Guo, Zheng
    MOLECULAR CANCER THERAPEUTICS, 2010, 9 (08) : 2186 - 2195
  • [50] Investigating regionalization techniques for large-scale hydrological modelling
    Pagliero, Liliana
    Bouraoui, Faycal
    Diels, Jan
    Willems, Patrick
    McIntyre, Neil
    JOURNAL OF HYDROLOGY, 2019, 570 : 220 - 235