Modeling thermophoretic effects in solid-state nanopores

被引:23
作者
Belkin, Maxim [1 ]
Chao, Shu-Han [2 ]
Giannetti, Gino [2 ]
Aksimentiev, Aleksei [2 ]
机构
[1] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Molecular dynamics; Thermophoresis; Thermodiffusion; Soret coefficient; Plasmonic heating; Nanofluidics; Boundary-driven MD; Non-equilibrium MD; MOLECULAR-DYNAMICS SIMULATIONS; SINGLE-STRANDED-DNA; THERMAL-DIFFUSION; POLYMER-SOLUTIONS; HEAT-CONDUCTION; TRANSPORT; LIQUIDS; ELECTROLYTES; MIXTURES; PARTICLE;
D O I
10.1007/s10825-014-0594-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Local modulation of temperature has emerged as a new mechanism for regulation of molecular transport through nanopores. Predicting the effect of such modulations on nanopore transport requires simulation protocols capable of reproducing non-uniform temperature gradients observed in experiment. Conventional molecular dynamics ( MD) method typically employs a single thermostat for maintaining a uniform distribution of temperature in the entire simulation domain, and, therefore, can not model local temperature variations. In this article, we describe a set of simulation protocols that enable modeling of nanopore systems featuring non-uniform distributions of temperature. First, we describe a method to impose a temperature gradient in all-atom MD simulations based on a boundary-driven non-equilibrium MD protocol. Then, we use this method to study the effect of temperature gradient on the distribution of ions in bulk solution ( the thermophoretic effect). We show that DNA nucleotides exhibit differential response to the same temperature gradient. Next, we describe a method to directly compute the effective force of a thermal gradient on a prototypical biomolecule-a fragment of double-stranded DNA. Following that, we demonstrate an all-atom MD protocol for modeling thermophoretic effects in solid-state nanopores. We show that local heating of a nanopore volume can be used to regulate the nanopore ionic current. Finally, we show how continuum calculations can be coupled to a coarse-grained model of DNA to study the effect of local temperature modulation on electrophoretic motion of DNA through plasmonic nanopores. The computational methods described in this article are expected to find applications in rational design of temperature-responsive nanopore systems.
引用
收藏
页码:826 / 838
页数:13
相关论文
共 97 条
[1]   THERMAL DIFFUSION IN SOLUTIONS OF ELECTROLYTES [J].
AGAR, JN ;
TURNER, JCR .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1960, 255 (1282) :307-330
[2]  
Alexander F., 1954, ZUR THEORIE THERMODI
[4]  
ANDERSON JL, 1989, ANNU REV FLUID MECH, V21, P61
[5]  
ANDREEV AF, 1988, ZH EKSP TEOR FIZ+, V94, P210
[6]   Water polarization induced by thermal gradients: The extended simple point charge model (SPC/E) [J].
Armstrong, J. A. ;
Bresme, F. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (01)
[7]   Microscopic interpretation of a pure chemical contribution to the Soret effect [J].
Artola, Pierre-Arnaud ;
Rousseau, Bernard .
PHYSICAL REVIEW LETTERS, 2007, 98 (12)
[8]   Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations [J].
Batcho, PF ;
Case, DA ;
Schlick, T .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (09) :4003-4018
[9]   Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores [J].
Belkin, Maxim ;
Maffeo, Christopher ;
Wells, David B. ;
Aksimentiev, Aleksei .
ACS NANO, 2013, 7 (08) :6816-6824
[10]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153