Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq

被引:151
作者
Bagnoli, Johannes W. [1 ]
Ziegenhain, Christoph [1 ,2 ]
Janjic, Aleksandar [1 ]
Wange, Lucas E. [1 ]
Vieth, Beate [1 ]
Parekh, Swati [1 ,3 ]
Geuder, Johanna [1 ]
Hellmann, Ines [1 ]
Enard, Wolfgang [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Biol 2, Anthropol & Human Genom, Grosshaderner Str 2, D-82152 Martinsried, Germany
[2] Karolinska Inst, Dept Cell & Mol Biol, S-17177 Stockholm, Sweden
[3] Max Planck Inst Biol Ageing, D-50931 Cologne, Germany
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
TECHNOLOGIES;
D O I
10.1038/s41467-018-05347-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell RNA sequencing (scRNA-seq) has emerged as a central genome-wide method to characterize cellular identities and processes. Consequently, improving its sensitivity, flexibility, and cost-efficiency can advance many research questions. Among the flexible platebased methods, single-cell RNA barcoding and sequencing (SCRB-seq) is highly sensitive and efficient. Here, we systematically evaluate experimental conditions of this protocol and find that adding polyethylene glycol considerably increases sensitivity by enhancing cDNA synthesis. Furthermore, using Terra polymerase increases efficiency due to a more even cDNA amplification that requires less sequencing of libraries. We combined these and other improvements to develop a scRNA-seq library protocol we call molecular crowding SCRB-seq (mcSCRB-seq), which we show to be one of the most sensitive, efficient, and flexible scRNA-seq methods to date.
引用
收藏
页数:8
相关论文
共 34 条
[1]  
Bagnoli J., 2018, PROTOCOLS IO, DOI [10.17504/protocols.io.nrkdd4w, DOI 10.17504/PROTOCOLS.IO.NRKDD4W]
[2]   The external RNA controls consortium: a progress report [J].
Baker, SC ;
Bauer, SR ;
Beyer, RP ;
Brenton, JD ;
Bromley, B ;
Burrill, J ;
Causton, H ;
Conley, MP ;
Elespuru, R ;
Fero, M ;
Foy, C ;
Fuscoe, J ;
Gao, XL ;
Gerhold, DL ;
Gilles, P ;
Goodsaid, F ;
Guo, X ;
Hackett, J ;
Hockett, RD ;
Ikonomi, P ;
Irizarry, RA ;
Kawasaki, ES ;
Kaysser-Kranich, T ;
Kerr, K ;
Kiser, G ;
Koch, WH ;
Lee, KY ;
Liu, CM ;
Liu, ZL ;
Lucas, A ;
Manohar, CF ;
Miyada, G ;
Modrusan, Z ;
Parkes, H ;
Puri, RK ;
Reid, L ;
Ryder, TB ;
Salit, M ;
Samaha, RR ;
Scherf, U ;
Sendera, TJ ;
Setterquist, RA ;
Shi, LM ;
Shippy, R ;
Soriano, JV ;
Wagar, EA ;
Warrington, JA ;
Williams, M ;
Wilmer, F ;
Wilson, M .
NATURE METHODS, 2005, 2 (10) :731-734
[3]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[4]  
Dixit A., 2016, CORRECTING CHIMERIC, DOI [10.1101/093237, DOI 10.1101/093237]
[5]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[6]   CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq [J].
Hashimshony, Tamar ;
Senderovich, Naftalie ;
Avital, Gal ;
Klochendler, Agnes ;
de Leeuw, Yaron ;
Anavy, Leon ;
Gennert, Dave ;
Li, Shuqiang ;
Livak, Kenneth J. ;
Rozenblatt-Rosen, Orit ;
Dor, Yuval ;
Regev, Aviv ;
Yanai, Itai .
GENOME BIOLOGY, 2016, 17
[7]  
Islam S, 2014, NAT METHODS, V11, P163, DOI [10.1038/NMETH.2772, 10.1038/nmeth.2772]
[8]   The Technology and Biology of Single-Cell RNA Sequencing [J].
Kolodziejczyk, Aleksandra A. ;
Kim, Jong Kyoung ;
Svensson, Valentine ;
Marioni, John C. ;
Teichmann, Sarah A. .
MOLECULAR CELL, 2015, 58 (04) :610-620
[9]   voom: precision weights unlock linear model analysis tools for RNA-seq read counts [J].
Law, Charity W. ;
Chen, Yunshun ;
Shi, Wei ;
Smyth, Gordon K. .
GENOME BIOLOGY, 2014, 15 (02)
[10]   TARGETED MUTATION OF THE DNA METHYLTRANSFERASE GENE RESULTS IN EMBRYONIC LETHALITY [J].
LI, E ;
BESTOR, TH ;
JAENISCH, R .
CELL, 1992, 69 (06) :915-926