Phosphorus removal from aqueous solution by nanoscale zero valent iron in the presence of copper chloride

被引:88
|
作者
Eljamal, Osama [1 ]
Khalil, Ahmed M. E. [1 ,2 ]
Sugihara, Yuji [1 ]
Matsunaga, Nobuhiro [1 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Dept Earth Syst Sci & Technol, 6-1 Kasugakoen, Kasuga, Fukuoka 8168580, Japan
[2] Cairo Univ, Dept Chem Engn, Fac Engn, Giza 12613, Egypt
关键词
Phosphorus removal; Nanoscale zero valent iron; Phosphate recovery; Adsorption; Bimetallic iron; CORE-SHELL STRUCTURE; PHOSPHATE ADSORPTION; KINETICS; SORPTION; NITRATE; DECHLORINATION; REDUCTION;
D O I
10.1016/j.cej.2016.02.052
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates the adsorption of phosphorus by nanoscale zero valent iron (NZVI) in the presence of copper chloride. The NZVI used for the experiments was synthesized under optimum conditions using the chemical reduction method. The NZVI was characterized by transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller surface characterization and particle size analysis. Batch experiments were performed under different conditions to study the effect of parameters such as initial phosphorus concentration, copper chloride load, aerobic, anaerobic, pH and recovery. The results indicated that the presence of copper chloride effectively enhanced the adsorption capacity of phosphorus as it produced copper ferrite spinel on NZVI particles' surface which can adsorb phosphorus and increase its rate of adsorption, and also it stimulated NZVI corrosion. The adsorption capacity of phosphorus reached 50 mg PO43--P/g NZVI in the presence of copper chloride while NZVI without copper chloride reached the maximum adsorption capacity of 28 mg PO43--P/g NZVI. Phosphorus recovery batch experiments results showed that the maximum phosphorus recovery achieved at pH 12 was 60%. But the recovery of phosphorus increased by increasing the molarity of the alkaline medium (NaOH) solution used for recovery. A complete recovery of phosphorus was gained using 1 M NaOH solution. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:225 / 231
页数:7
相关论文
共 50 条
  • [41] Nanoscale zero valent supported by Zeolite and Montmorillonite: Template effect of the removal of lead ion from an aqueous solution
    Arancibia-Miranda, Nicolas
    Baltazar, Samuel E.
    Garcia, Alejandra
    Munoz-Lira, Daniela
    Sepulveda, Pamela
    Rubio, Maria A.
    Altbir, Dora
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 301 : 371 - 380
  • [42] Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: Kinetics, thermodynamic and mechanism
    Arshadi, M.
    Soleymanzadeh, M.
    Salvacion, J. W. L.
    SalimiVahid, F.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 426 : 241 - 251
  • [43] Aluminum Pillared Palygorskite-Supported Nanoscale Zero-Valent Iron for Removal of Cu(II), Ni(II) From Aqueous Solution
    Chang, Yue
    He, Yuan-yuan
    Liu, Ting
    Guo, Ying-hao
    Zha, Fei
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (09) : 6727 - 6736
  • [44] Removal of spironolactone from aqueous solution using bentonite-supported nanoscale zero-valent iron and activated charcoal
    Sulaiman, Saleh
    Al-Jabari, Mohammed
    DESALINATION AND WATER TREATMENT, 2020, 173 : 283 - 293
  • [45] Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution
    Petala, Eleni
    Dimos, Konstantinos
    Douvalis, Alexios
    Bakas, Thomas
    Tucek, Jiri
    Zboril, Radek
    Karakassides, Michael A.
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 261 : 295 - 306
  • [46] Fast and Highly Efficient Removal of Chromate from Aqueous Solution Using Nanoscale Zero-Valent Iron/Activated Carbon (NZVI/AC)
    Xu, Chun-Hua
    Zhu, Liu-jia
    Wang, Xiao-Hong
    Lin, Sheng
    Chen, Ya-ming
    WATER AIR AND SOIL POLLUTION, 2014, 225 (02)
  • [47] Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite
    Kim, Seol Ah
    Kamala-Kannan, Seralathan
    Lee, Kui-Jae
    Park, Yool-Jin
    Shea, Patrick J.
    Lee, Wang-Hyu
    Kim, Hyung-Moo
    Oh, Byung-Taek
    CHEMICAL ENGINEERING JOURNAL, 2013, 217 : 54 - 60
  • [48] Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites
    Wang, Can
    Luo, Hanjin
    Zhang, Zilong
    Wu, Yan
    Zhang, Jian
    Chen, Shaowei
    JOURNAL OF HAZARDOUS MATERIALS, 2014, 268 : 124 - 131
  • [49] Chitosan Modifying Nanoscale Zero Valent Iron for Tetracycline Removal from Aqueous Solutions: Proposed Pathway
    Wang, Xiangyu
    Zhang, Binbin
    Ma, Jun
    Ning, Ping
    ENVIRONMENTAL ENGINEERING SCIENCE, 2019, 36 (03) : 273 - 282
  • [50] Research Progress of Aqueous Pollutants Removal by Sulfidated Nanoscale Zero-valent Iron
    Tang Jiang
    Tang Lin
    Feng Haopeng
    Dong Haoran
    Zhang Yi
    Liu Sishi
    Zeng Guangming
    ACTA CHIMICA SINICA, 2017, 75 (06) : 575 - 582