Nitric oxide and dopamine metabolism converge via mitochondrial dysfunction in the mechanisms of neurodegeneration in Parkinson's disease

被引:26
作者
Nunes, Carla [1 ,2 ]
Laranjinha, Joao [1 ,2 ]
机构
[1] Univ Coimbra, Fac Pharm, Coimbra, Portugal
[2] Univ Coimbra, Ctr Neurosci & Cell Biol, Coimbra, Portugal
关键词
Nitric oxide; DOPAC; Mitochondrial dysfunction; Nitroxidative stress; Glutathione; COMPLEX-I; OXIDATIVE STRESS; GLUTATHIONE DEPLETION; REACTIVE OXYGEN; RESPIRATORY-CHAIN; SYNTHASE ACTIVITY; SUBSTANTIA-NIGRA; RAT-LIVER; INHIBITION; APOPTOSIS;
D O I
10.1016/j.abb.2021.108877
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular mechanisms underlying the degeneration and neuronal death associated with Parkinson's disease (PD) are not clearly understood. Several pathways and models have been explored in an overwhelming number of studies. Overall, from these studies, mitochondrial dysfunction and nitroxidative stress have emerged as major contributors to degeneration of dopaminergic neurons in PD. In addition, an excessive or inappropriate production of nitric oxide (center dot NO) and an abnormal metabolism of dopamine have been independently implicated in both processes. However, the participation of center dot NO in reactions with dopamine relevant to neurotoxicity strongly suggests that dopamine or its metabolites may be potential targets for center dot NO, affecting the physiological chemistry of both, center dot NO and dopamine. In this short review, we provide a critical and integrative appraisal of the nitric oxide-dopamine pathway we have previously suggested and that might be operative in PD. This pathway emphasizes a connection between abnormal dopamine and center dot NO metabolism, which may potentially converge in an integrated mechanism with toxic cellular outcomes. In particular, it encompasses the synergistic interaction of center dot NO with 3,4-dihydroxyphenylacetic acid (DOPAC), a major dopamine metabolite, leading to dopaminergic cell death via mechanisms that involve mitochondrial dysfunction, gluthathione depletion and nitroxidative stress.
引用
收藏
页数:6
相关论文
共 92 条
[1]   Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra [J].
Alam, ZI ;
Jenner, A ;
Daniel, SE ;
Lees, AJ ;
Cairns, N ;
Marsden, CD ;
Jenner, P ;
Halliwell, B .
JOURNAL OF NEUROCHEMISTRY, 1997, 69 (03) :1196-1203
[2]   Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway [J].
Almeida, A ;
Moncada, S ;
Bolaños, JP .
NATURE CELL BIOLOGY, 2004, 6 (01) :45-U9
[3]   Mitochondrial damage by nitric oxide is potentiated by dopamine in PC12 cells [J].
Antunes, F ;
Han, D ;
Rettori, D ;
Cadenas, E .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2002, 1556 (2-3) :233-238
[4]   Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria [J].
Bal-Price, A ;
Brown, GC .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (04) :1455-1464
[5]  
Barrett CW, 2017, ISSUES TOXICOL, V34, P116
[6]   DOPAMINE NEUROTOXICITY - INHIBITION OF MITOCHONDRIAL RESPIRATION [J].
BENSHACHAR, D ;
ZUK, R ;
GLINKA, Y .
JOURNAL OF NEUROCHEMISTRY, 1995, 64 (02) :718-723
[7]   Mitochondria as multifaceted regulators of cell death [J].
Bock, Florian J. ;
Tait, Stephen W. G. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2020, 21 (02) :85-100
[8]  
Bolanos JP, 1997, J NEUROCHEM, V68, P2227
[9]  
BOLANOS JP, 1995, J NEUROCHEM, V64, P1965
[10]   MITOCHONDRIAL PRODUCTION OF SUPEROXIDE ANIONS AND ITS RELATIONSHIP TO ANTIMYCIN INSENSITIVE RESPIRATION [J].
BOVERIS, A ;
CADENAS, E .
FEBS LETTERS, 1975, 54 (03) :311-314