Cosmic microwave background science at commercial airline altitudes

被引:1
|
作者
Feeney, Stephen M. [1 ,2 ]
Gudmundsson, Jon E. [3 ,4 ]
Peiris, Hiranya V. [3 ,5 ]
Verde, Licia [6 ,7 ]
Errard, Josquin [8 ,9 ,10 ,11 ]
机构
[1] Imperial Coll London, Blackett Lab, Dept Phys, Prince Consort Rd, London SW7 2AZ, England
[2] Ctr Computat Astrophys, 160 5th Ave, New York, NY 10010 USA
[3] AlbaNova, Oskar Klein Ctr, Dept Phys, SE-10691 Stockholm, Sweden
[4] Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
[5] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[6] Univ Barcelona, IEEC UB, ICC, Marti & Franques 1, E-08028 Barcelona, Spain
[7] ICREA, Pg Llus Co 23, Barcelona 08010, Spain
[8] Sorbonne Univ, ILP, 98 Bis Blvd Arago, F-75014 Paris, France
[9] CNRS, IN2P3, LPNHE, 4 Pl Jussieu, F-75252 Paris 05, France
[10] Univ Paris 06, 4 Pl Jussieu, F-75252 Paris 05, France
[11] Univ Paris 07, 4 Pl Jussieu, F-75252 Paris 05, France
基金
欧洲研究理事会; 瑞典研究理事会; 英国科学技术设施理事会;
关键词
methods: statistical; cosmic background radiation; early Universe; COMPONENT SEPARATION; GRAVITY-WAVES; TELESCOPE; NOISE;
D O I
10.1093/mnrasl/slx040
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Obtaining high-sensitivity measurements of degree-scale cosmic microwave background (CMB) polarization is the most direct path to detecting primordial gravitational waves. Robustly recovering any primordial signal from the dominant foreground emission will require high-fidelity observations at multiple frequencies, with excellent control of systematics. We explore the potential for a new platform for CMB observations, the Airlander 10 hybrid air vehicle, to perform this task. We show that the Airlander 10 platform, operating at commercial airline altitudes, is well suited to mapping frequencies above 220 GHz, which are critical for cleaning CMB maps of dust emission. Optimizing the distribution of detectors across frequencies, we forecast the ability of Airlander 10 to clean foregrounds of varying complexity as a function of altitude, demonstrating its complementarity with both existing (Planck) and ongoing (C-BASS) foreground observations. This novel platform could play a key role in defining our ultimate view of the polarized microwave sky.
引用
收藏
页码:L6 / L10
页数:5
相关论文
共 50 条
  • [41] On non-Gaussianity in the cosmic microwave background
    Novikov, D
    Schmalzing, J
    Mukhanov, VF
    ASTRONOMY & ASTROPHYSICS, 2000, 364 (01): : 17 - 25
  • [42] Missing dust signature in the cosmic microwave background
    Vavrycuk, Vaclav
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (01) : L44 - L48
  • [43] Imprints of the anisotropic inflation on the cosmic microwave background
    Watanabe, Masa-aki
    Kanno, Sugumi
    Soda, Jiro
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 412 (01) : L83 - L87
  • [44] Spectral distortions and anisotropies of the Cosmic Microwave Background
    De Zotti, Gianfranco
    Negrello, Mattia
    INTRODUCTION TO COSMOLOGY, 2016, 2 : 15 - 50
  • [45] Cosmic microwave background acoustic peak locations
    Pan, Z.
    Knox, L.
    Mulroe, B.
    Narimani, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 459 (03) : 2513 - 2524
  • [46] The information content of cosmic microwave background anisotropies
    Scott, Douglas
    Contreras, Dagoberto
    Narimani, Ali
    Ma, Yin-Zhe
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (06):
  • [47] Destriping cosmic microwave background polarimeter data
    Zonca, A.
    Williams, B.
    Meinhold, P.
    Lubin, P.
    ASTRONOMY AND COMPUTING, 2013, 3-4 : 13 - 22
  • [48] How to Derotate the Cosmic Microwave Background Polarization
    Kamionkowski, Marc
    PHYSICAL REVIEW LETTERS, 2009, 102 (11)
  • [49] Compensated isocurvature perturbations and the cosmic microwave background
    Grin, Daniel
    Dore, Olivier
    Kamionkowski, Marc
    PHYSICAL REVIEW D, 2011, 84 (12)
  • [50] Imprint of DES superstructures on the cosmic microwave background
    Kovacs, A.
    Sanchez, C.
    Garcia-Bellido, J.
    Nadathur, S.
    Crittenden, R.
    Gruen, D.
    Huterer, D.
    Bacon, D.
    Clampitt, J.
    DeRose, J.
    Dodelson, S.
    Gaztanaga, E.
    Jain, B.
    Kirk, D.
    Lahav, O.
    Miquel, R.
    Naidoo, K.
    Peacock, J. A.
    Soergel, B.
    Whiteway, L.
    Abdalla, F. B.
    Allam, S.
    Annis, J.
    Benoit-Levy, A.
    Bertin, E.
    Brooks, D.
    Buckley-Geer, E.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Carretero, J.
    Cunha, C. E.
    D'Andrea, C. B.
    da Costa, L. N.
    DePoy, D. L.
    Desai, S.
    Eifler, T. F.
    Finley, D. A.
    Flaugher, B.
    Fosalba, P.
    Frieman, J.
    Giannantonio, T.
    Goldstein, D. A.
    Gruendl, R. A.
    Gutierrez, G.
    James, D. J.
    Kuehn, K.
    Kuropatkin, N.
    Marshall, J. L.
    Melchior, P.
    Menanteau, F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (04) : 4166 - 4179