Electrically tunable quantum confinement of neutral excitons

被引:47
|
作者
Thureja, Deepankur [1 ,2 ]
Imamoglu, Atac [1 ]
Smolenski, Tomasz [1 ]
Amelio, Ivan [1 ]
Popert, Alexander [1 ]
Chervy, Thibault [1 ,6 ]
Lu, Xiaobo [1 ,7 ]
Liu, Song [3 ]
Barmak, Katayun [4 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [5 ]
Norris, David J. [2 ]
Kroner, Martin [1 ]
Murthy, Puneet A. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Opt Mat Engn Lab, Zurich, Switzerland
[3] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[5] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[6] NTT Res Inc, Phys & Informat PHI Labs, Sunnyvale, CA USA
[7] Peking Univ, Int Ctr Quantum Mat, Beijing, Peoples R China
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
POLARITONS; PHOTOLUMINESCENCE; DYNAMICS; FIELD; WIRES;
D O I
10.1038/s41586-022-04634-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Confining particles to distances below their de Broglie wavelength discretizes their motional state. This fundamental effect is observed in many physical systems, ranging from electrons confined in atoms or quantum dots(1,2) to ultracold atoms trapped in optical tweezers(3,4). In solid-state photonics, a long-standing goal has been to achieve fully tunable quantum confinement of optically active electron-hole pairs, known as excitons. To confine excitons, existing approaches mainly rely on material modulation(5), which suffers from poor control over the energy and position of trapping potentials. This has severely impeded the engineering of large-scale quantum photonic systems. Here we demonstrate electrically controlled quantum confinement of neutral excitons in 2D semiconductors. By combining gate-defined in-plane electric fields with inherent interactions between excitons and free charges in a lateral p-i-n junction, we achieve exciton confinement below 10 nm. Quantization of excitonic motion manifests in the measured optical response as a ladder of discrete voltage-dependent states below the continuum. Furthermore, we observe that our confining potentials lead to a strong modification of the relative wave function of excitons. Our technique provides an experimental route towards creating scalable arrays of identical single-photon sources and has wide-ranging implications for realizing strongly correlated photonic phases(6,7) and on-chip optical quantum information processors(8,9).
引用
收藏
页码:298 / +
页数:22
相关论文
共 50 条
  • [21] Electrically tunable dipolar interactions between layer-hybridized excitons
    Erkensten, Daniel
    Brem, Samuel
    Perea-Causin, Rauel
    Hagel, Joakim
    Tagarelli, Fedele
    Lopriore, Edoardo
    Kis, Andras
    Malic, Ermin
    NANOSCALE, 2023, 15 (26) : 11064 - 11071
  • [22] Modeling shallow confinement in tunable quantum dots
    Akmentinsh, Austris
    Ubbelohde, Niels
    Kashcheyevs, Vyacheslavs
    PHYSICAL REVIEW B, 2025, 111 (07)
  • [23] Excitons properties and quantum confinement in CdS/ZnS core/shell quantum dots
    Jia, Guozhi
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2011, 5 (07): : 738 - 741
  • [24] Quantum confinement of excitons in dendrite-like GaN nanowires
    Ghosh, R
    Basak, D
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (08)
  • [25] Excitons in artificial quantum dots in the weak spatial confinement regime
    S. V. Zaitsev
    M. K. Welsch
    A. Forchel
    G. Bacher
    Journal of Experimental and Theoretical Physics, 2007, 105 : 1241 - 1258
  • [26] Neutral and Positively Charged Excitons in Narrow Quantum Ring
    Porras Monroy, L. C.
    Rodriguez-Prada, F. A.
    Mikhailov, I. D.
    7TH INTERNATIONAL CONFERENCE ON LOW DIMENSIONAL STRUCTURES AND DEVICES (LDSD 2011), 2014, 1598 : 99 - 102
  • [27] Magnetic-field and quantum confinement asymmetry effects on excitons
    Pereyra, P
    Ulloa, SE
    PHYSICAL REVIEW B, 2000, 61 (03) : 2128 - 2137
  • [28] The confinement effect in spherical inhomogeneous quantum dots and stability of excitons
    Benhaddou, F.
    Zorkani, I.
    Jorio, A.
    AIP ADVANCES, 2017, 7 (06):
  • [29] Hanle Effect of Charged and Neutral Excitons in Quantum Wells
    Ł. Kłopotowski
    J. Suffczyński
    M. Nawrocki
    E. Janik
    Journal of Superconductivity, 2003, 16 : 435 - 437
  • [30] Hanle effect of charged and neutral excitons in quantum wells
    Klopotowski, L
    Suffczynski, J
    Nawrocki, M
    Janik, E
    JOURNAL OF SUPERCONDUCTIVITY, 2003, 16 (02): : 435 - 437