Electrically tunable quantum confinement of neutral excitons

被引:57
作者
Thureja, Deepankur [1 ,2 ]
Imamoglu, Atac [1 ]
Smolenski, Tomasz [1 ]
Amelio, Ivan [1 ]
Popert, Alexander [1 ]
Chervy, Thibault [1 ,6 ]
Lu, Xiaobo [1 ,7 ]
Liu, Song [3 ]
Barmak, Katayun [4 ]
Watanabe, Kenji [5 ]
Taniguchi, Takashi [5 ]
Norris, David J. [2 ]
Kroner, Martin [1 ]
Murthy, Puneet A. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Opt Mat Engn Lab, Zurich, Switzerland
[3] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[5] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[6] NTT Res Inc, Phys & Informat PHI Labs, Sunnyvale, CA USA
[7] Peking Univ, Int Ctr Quantum Mat, Beijing, Peoples R China
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
POLARITONS; PHOTOLUMINESCENCE; DYNAMICS; FIELD; WIRES;
D O I
10.1038/s41586-022-04634-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Confining particles to distances below their de Broglie wavelength discretizes their motional state. This fundamental effect is observed in many physical systems, ranging from electrons confined in atoms or quantum dots(1,2) to ultracold atoms trapped in optical tweezers(3,4). In solid-state photonics, a long-standing goal has been to achieve fully tunable quantum confinement of optically active electron-hole pairs, known as excitons. To confine excitons, existing approaches mainly rely on material modulation(5), which suffers from poor control over the energy and position of trapping potentials. This has severely impeded the engineering of large-scale quantum photonic systems. Here we demonstrate electrically controlled quantum confinement of neutral excitons in 2D semiconductors. By combining gate-defined in-plane electric fields with inherent interactions between excitons and free charges in a lateral p-i-n junction, we achieve exciton confinement below 10 nm. Quantization of excitonic motion manifests in the measured optical response as a ladder of discrete voltage-dependent states below the continuum. Furthermore, we observe that our confining potentials lead to a strong modification of the relative wave function of excitons. Our technique provides an experimental route towards creating scalable arrays of identical single-photon sources and has wide-ranging implications for realizing strongly correlated photonic phases(6,7) and on-chip optical quantum information processors(8,9).
引用
收藏
页码:298 / +
页数:22
相关论文
共 56 条
[41]   Large Excitonic Reflectivity of Monolayer MoSe2 Encapsulated in Hexagonal Boron Nitride [J].
Scuri, Giovanni ;
Zhou, You ;
High, Alexander A. ;
Wild, Dominik S. ;
Shu, Chi ;
De Greve, Kristiaan ;
Jauregui, Luis A. ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Kim, Philip ;
Lukin, Mikhail D. ;
Park, Hongkun .
PHYSICAL REVIEW LETTERS, 2018, 120 (03)
[42]   Deterministic Preparation of a Tunable Few-Fermion System [J].
Serwane, F. ;
Zuern, G. ;
Lompe, T. ;
Ottenstein, T. B. ;
Wenz, A. N. ;
Jochim, S. .
SCIENCE, 2011, 332 (6027) :336-338
[43]   Nanoscale Trapping of Interlayer Excitons in a 2D Semiconductor Heterostructure [J].
Shanks, Daniel N. ;
Mahdikhanysarvejahany, Fateme ;
Muccianti, Christine ;
Alfrey, Adam ;
Koehler, Michael R. ;
Mandrus, David G. ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Yu, Hongyi ;
LeRoy, Brian J. ;
Schaibley, John R. .
NANO LETTERS, 2021, 21 (13) :5641-5647
[44]  
Sidler M, 2017, NAT PHYS, V13, P255, DOI [10.1038/nphys3949, 10.1038/NPHYS3949]
[45]   Interaction-Induced Shubnikov-de Haas Oscillations in Optical Conductivity of Monolayer MoSe2 [J].
Smolenski, T. ;
Cotlet, O. ;
Popert, A. ;
Back, P. ;
Shimazaki, Y. ;
Knuppel, P. ;
Dietler, N. ;
Taniguchi, T. ;
Watanabe, K. ;
Kroner, M. ;
Imamoglu, A. .
PHYSICAL REVIEW LETTERS, 2019, 123 (09)
[46]   Via Method for Lithography Free Contact and Preservation of 2D Materials [J].
Telford, Evan J. ;
Benyamini, Avishai ;
Rhodes, Daniel ;
Wang, Da ;
Jung, Younghun ;
Zangiabad, Amirali ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Jia, Shuang ;
Barmak, Katayun ;
Pasupathy, Abhay N. ;
Dean, Cory R. ;
Hone, James .
NANO LETTERS, 2018, 18 (02) :1416-1420
[47]   Enhanced Interactions between Dipolar Polaritons [J].
Togan, Emre ;
Lim, Hyang-Tag ;
Faelt, Stefan ;
Wegscheider, Werner ;
Imamoglu, Atac .
PHYSICAL REVIEW LETTERS, 2018, 121 (22)
[48]   Room-temperature electrical control of exciton flux in a van der Waals heterostructure [J].
Unuchek, Dmitrii ;
Ciarrocchi, Alberto ;
Avsar, Ahmet ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kis, Andras .
NATURE, 2018, 560 (7718) :340-+
[49]   Density Enhanced Diffusion of Dipolar Excitons within a One-Dimensional Channel [J].
Voegele, X. P. ;
Schuh, D. ;
Wegscheider, W. ;
Kotthaus, J. P. ;
Holleitner, A. W. .
PHYSICAL REVIEW LETTERS, 2009, 103 (12)
[50]   Colloquium: Excitons in atomically thin transition metal dichalcogenides [J].
Wang, Gang ;
Chernikov, Alexey ;
Glazov, Mikhail M. ;
Heinz, Tony F. ;
Marie, Xavier ;
Amand, Thierry ;
Urbaszek, Bernhard .
REVIEWS OF MODERN PHYSICS, 2018, 90 (02)