Topology-Preserving Thinning in 2-D Pseudomanifolds
被引:0
作者:
Passat, Nicolas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, LSIIT, CNRS, UMR 7005, Strasbourg, FranceUniv Strasbourg, LSIIT, CNRS, UMR 7005, Strasbourg, France
Passat, Nicolas
[1
]
Couprie, Michel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, ESIEE, Lab Informat Gaspard Monge, F- 77420 Paris, FranceUniv Strasbourg, LSIIT, CNRS, UMR 7005, Strasbourg, France
Couprie, Michel
[2
]
Mazo, Loic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, LSIIT, CNRS, UMR 7005, Strasbourg, France
Univ Paris Est, ESIEE, Lab Informat Gaspard Monge, F- 77420 Paris, FranceUniv Strasbourg, LSIIT, CNRS, UMR 7005, Strasbourg, France
Mazo, Loic
[1
,2
]
Bertrand, Gilles
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, ESIEE, Lab Informat Gaspard Monge, F- 77420 Paris, FranceUniv Strasbourg, LSIIT, CNRS, UMR 7005, Strasbourg, France
Bertrand, Gilles
[2
]
机构:
[1] Univ Strasbourg, LSIIT, CNRS, UMR 7005, Strasbourg, France
[2] Univ Paris Est, ESIEE, Lab Informat Gaspard Monge, F- 77420 Paris, France
来源:
DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS
|
2009年
/
5810卷
Preserving topological properties of objects during thinning procedures is an important issue in the field of image analysis. In the case of 2-D digital images (i.e. images defined on Z(2)) such procedures are usually based on the notion of simple point. By opposition to the case of spaces of higher dimensions (i.e. Z(n), n >= 3), it was proved in the 80's that the exclusive use of simple points in Z2 was indeed sufficient to develop thinning procedures providing an output that is minimal with respect to the topological characteristics of the object. Based on the recently introduced notion of minimal simple set (generalising the notion of simple point), we establish new properties related to topology-preserving thinning in 2-D spaces which extend, in particular, this classical result to more general spaces (the 2-D pseudomanifolds) and objects (the 2-D cubical complexes).