Learning With Context Feedback Loop for Robust Medical Image Segmentation

被引:39
作者
Girum, Kibrom Berihu [1 ,2 ]
Crehange, Gilles [1 ,2 ,3 ]
Lalande, Alain [1 ,4 ]
机构
[1] Univ Burgundy, Imaging & Artificial Vis ImViA Res Lab, F-21000 Dijon, France
[2] Ctr Georges Francois Leclerc CGFL, Dept Radiat Oncol, F-21000 Dijon, France
[3] Inst Curie, Dept Radiat Oncol, F-75005 Paris, France
[4] Univ Hosp Dijon, Dept Med Imaging, F-2100 Dijon, France
关键词
Image segmentation; Feature extraction; Biomedical imaging; Shape; Decoding; Computed tomography; Feedback loop; CNN; feedback loop; MRI; ultrasound; CT; ULTRASOUND;
D O I
10.1109/TMI.2021.3060497
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning has successfully been leveraged for medical image segmentation. It employs convolutional neural networks (CNN) to learn distinctive image features from a defined pixel-wise objective function. However, this approach can lead to less output pixel interdependence producing incomplete and unrealistic segmentation results. In this paper, we present a fully automatic deep learning method for robust medical image segmentation by formulating the segmentation problem as a recurrent framework using two systems. The first one is a forward system of an encoder-decoder CNN that predicts the segmentation result from the input image. The predicted probabilistic output of the forward system is then encoded by a fully convolutional network (FCN)-based context feedback system. The encoded feature space of the FCN is then integrated back into the forward system's feed-forward learning process. Using the FCN-based context feedback loop allows the forward system to learn and extract more high-level image features and fix previous mistakes, thereby improving prediction accuracy over time. Experimental results, performed on four different clinical datasets, demonstrate our method's potential application for single and multi-structure medical image segmentation by outperforming the state of the art methods. With the feedback loop, deep learning methods can now produce results that are both anatomically plausible and robust to low contrast images. Therefore, formulating image segmentation as a recurrent framework of two interconnected networks via context feedback loop can be a potential method for robust and efficient medical image analysis.
引用
收藏
页码:1542 / 1554
页数:13
相关论文
共 53 条
[1]   Recurrent residual U-Net for medical image segmentation [J].
Alom, Md Zahangir ;
Yakopcic, Chris ;
Hasan, Mahmudul ;
Taha, Tarek M. ;
Asari, Vijayan K. .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (01)
[2]   Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering [J].
Anderson, Peter ;
He, Xiaodong ;
Buehler, Chris ;
Teney, Damien ;
Johnson, Mark ;
Gould, Stephen ;
Zhang, Lei .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6077-6086
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]   Learning Shape Priors for Robust Cardiac MR Segmentation from Multi-view Images [J].
Chen, Chen ;
Biffi, Carlo ;
Tarroni, Giacomo ;
Petersen, Steffen ;
Bai, Wenjia ;
Rueckert, Daniel .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :523-531
[6]   American Brachytherapy Society consensus guidelines for transrectal ultrasound-guided permanent prostate brachytherapy [J].
Davis, Brian J. ;
Horwitz, Eric M. ;
Lee, W. Robert ;
Crook, Juanita M. ;
Stock, Richard G. ;
Merrick, Gregory S. ;
Butler, Wayne M. ;
Grimm, Peter D. ;
Stone, Nelson N. ;
Potters, Louis ;
Zietman, Anthony L. ;
Zelefsky, Michael J. .
BRACHYTHERAPY, 2012, 11 (01) :6-19
[7]  
Geirhos R., 2019, ICLR
[8]   Data Descriptor: A multiscale imaging and modelling dataset of the human inner ear [J].
Gerber, Nicolas ;
Reyes, Mauricio ;
Barazzetti, Livia ;
Kjer, Hans Martin ;
Vera, Sergio ;
Stauber, Martin ;
Mistrik, Pavel ;
Ceresa, Mario ;
Mangado, Nerea ;
Wimmer, Wilhelm ;
Stark, Thomas ;
Paulsen, Rasmus R. ;
Weber, Stefan ;
Caversaccio, Marco ;
Gonzalez Ballester, Miguel A. .
SCIENTIFIC DATA, 2017, 4
[9]   A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images [J].
Ghose, Soumya ;
Oliver, Arnau ;
Marti, Robert ;
Llado, Xavier ;
Vilanova, Joan C. ;
Freixenet, Jordi ;
Mitra, Jhimli ;
Sidibe, Desire ;
Meriaudeau, Fabrice .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :262-287
[10]  
Girum Kibrom Berihu, 2019, Artificial Intelligence in Radiation Therapy. First International Workshop, AIRT 2019. Held in Conjunction with MICCAI 2019. Proceedings. Lecture Notes in Computer Science (LNCS 11850), P119, DOI 10.1007/978-3-030-32486-5_15