Vulnerability of Person Re-Identification Models to Metric Adversarial Attacks

被引:9
作者
Bouniot, Quentin [1 ]
Audigier, Romaric [1 ]
Loesch, Angelique [1 ]
机构
[1] CEA, LIST, Vis & Learning Lab Scene Anal, PC 184, F-91191 Gif Sur Yvette, France
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020) | 2020年
关键词
D O I
10.1109/CVPRW50498.2020.00405
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Person re-identification (re-ID) is a key problem in smart supervision of camera networks. Over the past years, models using deep learning have become state of the art. However, it has been shown that deep neural networks are flawed with adversarial examples, i.e. human-imperceptible perturbations. Extensively studied for the task of image closed-set classification, this problem can also appear in the case of open-set retrieval tasks. Indeed, recent work has shown that we can also generate adversarial examples for metric learning systems such as re-ID ones. These models remain vulnerable: when faced with adversarial examples, they fail to correctly recognize a person, which represents a security breach. These attacks are all the more dangerous as they are impossible to detect for a human operator. Attacking a metric consists in altering the distances between the feature of an attacked image and those of reference images, i.e. guides. In this article, we investigate different possible attacks depending on the number and type of guides available. From this metric attack family, two particularly effective attacks stand out. The first one, called Self Metric Attack, is a strong attack that does not need any image apart from the attacked image. The second one, called Furthest-Negative Attack, makes full use of a set of images. Attacks are evaluated on commonly used datasets: Market1501 and DukeMTMC. Finally, we propose an efficient extension of adversarial training protocol adapted to metric learning as a defense that increases the robustness of re-ID models.(1)
引用
收藏
页码:3450 / 3459
页数:10
相关论文
共 30 条
  • [1] [Anonymous], 2018, INT C MACH LEARN ICM
  • [2] Bai Song, 2019, ARXIV190110650V2
  • [3] Carlini N., 2017, ACM WORKSH ART INT S, P3
  • [4] Towards Evaluating the Robustness of Neural Networks
    Carlini, Nicholas
    Wagner, David
    [J]. 2017 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2017, : 39 - 57
  • [5] Boosting Adversarial Attacks with Momentum
    Dong, Yinpeng
    Liao, Fangzhou
    Pang, Tianyu
    Su, Hang
    Zhu, Jun
    Hu, Xiaolin
    Li, Jianguo
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9185 - 9193
  • [6] Goodfellow Ian J., 2015, 3 INT C LEARN REPR I
  • [7] Guo C., 2018, ICLR
  • [8] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [9] Hermans Alexander, 2017, ARXIV
  • [10] Kurakin A., 2017, PROC INT C LEARN REP, P1