Quantum and classical noise in practical quantum-cryptography systems based on polarization-entangled photons

被引:8
|
作者
Castelletto, S [1 ]
Degiovanni, IP
Rastello, ML
机构
[1] Natl Inst Stand & Technol, Opt Technol Div, Gaithersburg, MD 20899 USA
[2] Ist Elettrotecnico Nazl Galileo Ferraris, I-10135 Turin, Italy
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevA.67.022305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum-cryptography key distribution (QCKD) experiments have been recently reported using polarization-entangled photons. However, in any practical realization, quantum systems suffer from either unwanted or induced interactions with the environment and the quantum measurement system, showing up as quantum and, ultimately, statistical noise. In this paper, we investigate how an ideal polarization entanglement in spontaneous parametric down-conversion (SPDC) suffers quantum noise in its practical implementation as a secure quantum system, yielding errors in the transmitted bit sequence. Since all SPDC-based QCKD schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we bundle up the overall quantum and statistical noise in an exhaustive model to calculate the accidental coincidences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of performances and advantages of different systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Cryptanalysis of a practical quantum key distribution with polarization-entangled photons
    Beth, T
    Müller-Quade, J
    Steinwandt, R
    QUANTUM INFORMATION & COMPUTATION, 2005, 5 (03) : 181 - 186
  • [3] Quantum cryptography with entangled photons
    Jennewein, T
    Simon, C
    Weihs, G
    Weinfurter, H
    Zeilinger, A
    PHYSICAL REVIEW LETTERS, 2000, 84 (20) : 4729 - 4732
  • [4] Emission of polarization-entangled microwave photons from a pair of quantum dots
    Emary, C
    Trauzettel, B
    Beenakker, CWJ
    PHYSICAL REVIEW LETTERS, 2005, 95 (12)
  • [5] Practical quantum key distribution with polarization entangled photons
    Poppe, A
    Fedrizzi, A
    Ursin, R
    Böhm, HR
    Lorünser, T
    Maurhardt, O
    Peev, M
    Suda, M
    Kurtsiefer, C
    Weinfurter, H
    Jennewein, T
    Zeilinger, A
    OPTICS EXPRESS, 2004, 12 (16): : 3865 - 3871
  • [6] A Photonic System for Generating Unconditional Polarization-Entangled Photons Based on Multiple Quantum Interference
    Terashima, Haruka
    Sato, Yoshiro
    Kobayashi, Satoshi
    Tsubakiyama, Takaho
    Nozaki, Ryo
    Kubo, Satoshi
    Osada, Tomo
    Sanaka, Kaoru
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (151):
  • [7] Polarization-Entangled Photons from Site-Controlled Pyramidal Quantum Dots
    Juska, G.
    Dimastrodonato, V.
    Chung, T. H.
    Gocalinska, A.
    Pelucchi, E.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [8] A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons
    Clausen, C.
    Bussieres, F.
    Tiranov, A.
    Herrmann, H.
    Silberhorn, C.
    Sohler, W.
    Afzelius, M.
    Gisin, N.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [9] Storage of polarization-entangled THz-bandwidth photons in a diamond quantum memory
    Fisher, Kent A. G.
    England, Duncan G.
    MacLean, Jean-Philippe W.
    Bustard, Philip J.
    Heshami, Khabat
    Resch, Kevin J.
    Sussman, Benjamin J.
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [10] The deployment of entangled photons for quantum cryptography.
    Poppe, A.
    Huebel, H.
    Schrenk, B.
    Blauensteiner, B.
    Hentschel, M.
    Ramelow, S.
    Kelling, T.
    Zeilinger, A.
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2007, 124 (05): : 142 - 148