Preparation of high-purity straight silicon nanowires by molten salt electrolysis

被引:44
作者
Zhang, Jie [1 ,2 ]
Fang, Sheng [2 ]
Qi, Xiaopeng [2 ]
Yu, Zhanglong [2 ]
Wu, Zhaohui [2 ]
Yang, Juanyu [1 ,2 ]
Lu, Shigang [1 ,2 ]
机构
[1] Gen Res Inst Nonferrous Met, Beijing 100088, Peoples R China
[2] China Automot Battery Res Inst Co Ltd, Beijing 100088, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2020年 / 40卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Silicon nanowires; Electrochemical reduction; Silicon dioxide; Nickel formate; ELECTROCHEMICAL REDUCTION; SI NANOWIRES; GROWTH; ANODE; PARTICLES; DIOXIDE;
D O I
10.1016/j.jechem.2019.04.014
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Silicon nanowires of high purity and regular morphology are of prime importance to ensure high specific capacities of lithium-ion batteries and reproducible electrode assembly process. Using nickel formate as a metal catalyst precursor, straight silicon nanowires (65-150 nm in diameter) were directly prepared by electrolysis from the Ni/SiO2 porous pellets with 0.8 wt% nickel content in molten CaCl2 at 900 degrees C. Benefiting from their straight appearance and high purity, the silicon nanowires therefore offered an initial coulombic efficiency of 90.53% and specific capacity of 3377 mAh/g. In addition, the silicon nanowire/carbon composite exhibited excellent cycle performance, retaining 90.38% of the initial capacity after 100 cycles. Whilst further study on the charge storage performance is still ongoing, these preliminary results demonstrate that nickel formate is an efficient and effective metal catalyst precursor for catalytic preparation of high purity straight silicon nanowires via the molten salt electrolysis, which is suitable for large-scale production. (C) 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:171 / 179
页数:9
相关论文
共 39 条
[1]   Catalytic Activity of Silicon Nanowires Decorated with Gold and Copper Nanoparticles Deposited by Pulsed Laser Ablation [J].
Casiello, Michele ;
Picca, Rosaria Anna ;
Fusco, Caterina ;
D'Accolti, Lucia ;
Leonardi, Antonio Alessio ;
Lo Faro, Maria Jose ;
Irrera, Alessia ;
Trusso, Sebastiano ;
Cotugno, Pietro ;
Sportelli, Maria Chiara ;
Cioffi, Nicola ;
Nacci, Angelo .
NANOMATERIALS, 2018, 8 (02)
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Quartz (SiO2): a new energy storage anode material for Li-ion batteries [J].
Chang, Won-Seok ;
Park, Cheol-Min ;
Kim, Jae-Hun ;
Kim, Young-Ugk ;
Jeong, Goojin ;
Sohn, Hun-Joon .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6895-6899
[4]   Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride [J].
Chen, GZ ;
Fray, DJ ;
Farthing, TW .
NATURE, 2000, 407 (6802) :361-364
[5]   One-Dimensional Porous Silicon Nanowires with Large Surface Area for Fast Charge-Discharge Lithium-Ion Batteries [J].
Chen, Xu ;
Bi, Qinsong ;
Sajjad, Muhammad ;
Wang, Xu ;
Ren, Yang ;
Zhou, Xiaowei ;
Xu, Wen ;
Liu, Zhu .
NANOMATERIALS, 2018, 8 (05)
[6]   Fast-Response and Low-Hysteresis Flexible Pressure Sensor Based on Silicon Nanowires [J].
Cheng, Wen ;
Yu, Linwei ;
Kong, Desheng ;
Yu, Zhongwei ;
Wang, Huiting ;
Ma, Zhong ;
Wang, Yunmu ;
Wang, Junzhuan ;
Pan, Lijia ;
Shi, Yi .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (07) :1069-1072
[7]   Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes [J].
Cho, Yong Jae ;
Kim, Han Sung ;
Im, Hyungsoon ;
Myung, Yoon ;
Jung, Gyeong Bok ;
Lee, Chi Woo ;
Park, Jeunghee ;
Park, Mi-Hee ;
Cho, Jaephil ;
Kang, Hong Seok .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (19) :9451-9457
[8]   Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM [J].
Choi, Insoo ;
Lee, Min Jeong ;
Oh, Seung M. ;
Kim, Jae Jeong .
ELECTROCHIMICA ACTA, 2012, 85 :369-376
[9]   Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO3 [J].
Dong, Yifan ;
Slade, Tyler ;
Stolt, Matthew J. ;
Li, Linsen ;
Girard, Steven N. ;
Mai, Liqiang ;
Jin, Song .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (46) :14453-14457
[10]   Formation of Si nanowires by the electrochemical reduction of SiO2 with Ni or NiO additives [J].
Fang, Sheng ;
Wang, Han ;
Yang, Juanyu ;
Yu, Bing ;
Lu, Shigang .
FARADAY DISCUSSIONS, 2016, 190 :433-449