Inhibitory microcircuits for top-down plasticity of sensory representations

被引:31
|
作者
Wilmes, Katharina Anna [1 ]
Clopath, Claudia [1 ]
机构
[1] Imperial Coll London, Bioengn Dept, London SW7 2AZ, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国工程与自然科学研究理事会;
关键词
EXPRESSING INTERNEURONS; VISUAL-CORTEX; SYNAPTIC STRENGTH; NEURONS; PARVALBUMIN; CONNECTIVITY; MODULATION; REVEALS; ACETYLCHOLINE; EXTINCTION;
D O I
10.1038/s41467-019-12972-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Rewards influence plasticity of early sensory representations, but the underlying changes in circuitry are unclear. Recent experimental findings suggest that inhibitory circuits regulate learning. In addition, inhibitory neurons are highly modulated by diverse long-range inputs, including reward signals. We, therefore, hypothesise that inhibitory plasticity plays a major role in adjusting stimulus representations. We investigate how top-down modulation by rewards interacts with local plasticity to induce long-lasting changes in circuitry. Using a computational model of layer 2/3 primary visual cortex, we demonstrate how interneuron circuits can store information about rewarded stimuli to instruct long-term changes in excitatory connectivity in the absence of further reward. In our model, stimulus-tuned somatostatin-positive interneurons develop strong connections to parvalbumin-positive interneurons during reward such that they selectively disinhibit the pyramidal layer henceforth. This triggers excitatory plasticity, leading to increased stimulus representation. We make specific testable predictions and show that this two-stage model allows for translation invariance of the learned representation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Distinct prefrontal top-down circuits differentially modulate sensorimotor behavior
    Huda, Rafiq
    Sipe, Grayson O.
    Breton-Provencher, Vincent
    Cruz, K. Guadalupe
    Pho, Gerald N.
    Adam, Elie
    Gunter, Liadan M.
    Sullins, Austin
    Wickersham, Ian R.
    Sur, Mriganka
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [32] Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus
    Hirata, A
    Aguilar, J
    Castro-Alamancos, MA
    JOURNAL OF NEUROSCIENCE, 2006, 26 (16): : 4426 - 4436
  • [33] Human sensory cortex structure and top-down controlling brain network determine individual differences in perceptual alternations
    Sang, Na
    Zhang, Lijie
    Hao, Lei
    Wang, Yongchao
    Wang, Xiaogang
    Zhang, Fan
    Huang, Hui
    Hou, Xin
    Mao, Yu
    Bi, Taiyong
    Qiu, Jiang
    NEUROSCIENCE LETTERS, 2017, 636 : 113 - 119
  • [34] Interareal oscillatory synchronization in top-down neocortical processing
    Bressler, Steven L.
    Richter, Craig G.
    CURRENT OPINION IN NEUROBIOLOGY, 2015, 31 : 62 - 66
  • [35] A lateralized top-down network for visuospatial attention and neglect
    Jiaojian Wang
    Yanghua Tian
    Mengzhu Wang
    Long Cao
    Huawang Wu
    Yun Zhang
    Kai Wang
    Tianzi Jiang
    Brain Imaging and Behavior, 2016, 10 : 1029 - 1037
  • [36] Mechanism for top-down control of working memory capacity
    Edin, Fredrik
    Klingberg, Torkel
    Johansson, Par
    McNab, Fiona
    Tegner, Jesper
    Compte, Albert
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (16) : 6802 - 6807
  • [37] Neural circuits for a top-down control of fear and extinction
    Marek, Roger
    Sun, Yajie
    Sah, Pankaj
    PSYCHOPHARMACOLOGY, 2019, 236 (01) : 313 - 320
  • [38] High-throughput quantitative top-down proteomics
    Cupp-Sutton, Kellye A.
    Wu, Si
    MOLECULAR OMICS, 2020, 16 (02) : 91 - 99
  • [39] Top-Down Proteomics of a Drop of Blood for Diabetes Monitoring
    Mao, Pan
    Wang, Daojing
    JOURNAL OF PROTEOME RESEARCH, 2014, 13 (03) : 1560 - 1569
  • [40] A lateralized top-down network for visuospatial attention and neglect
    Wang, Jiaojian
    Tian, Yanghua
    Wang, Mengzhu
    Cao, Long
    Wu, Huawang
    Zhang, Yun
    Wang, Kai
    Jiang, Tianzi
    BRAIN IMAGING AND BEHAVIOR, 2016, 10 (04) : 1029 - 1037