GLOBAL EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A MODEL OF PRICE FORMATION

被引:18
作者
Chayes, Lincoln [1 ]
del Mar Gonzalez, Maria [2 ]
Gualdani, Maria Pia [1 ,3 ]
Kim, Inwon [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Univ Politecn Cataluna, ETSEIB Dept Matemat, E-08028 Barcelona, Spain
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
diffusion equation with source; free boundary problem; price formulation model; gobal well-posedness;
D O I
10.1137/090753346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a model, due to J. M. Lasry and P. L. Lions, describing the evolution of a scalar price which is realized as a free boundary in a one-dimensional diffusion equation with dynamically evolving, nonstandard sources. We establish global existence and uniqueness.
引用
收藏
页码:2107 / 2135
页数:29
相关论文
共 9 条
[1]   A Two-Sided Contracting Stefan Problem [J].
Chayes, Lincoln ;
Kim, Inwon C. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (12) :2225-2256
[2]   Asymptotics for a Symmetric Equation in Price Formation [J].
del Mar Gonzalez, Maria ;
Pia Gualdani, Maria .
APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 59 (02) :233-246
[3]  
DEMASI A, 1991, LECT NOTES MATH, V1051
[4]  
DiBenedetto E., 1995, Partial differential equation
[5]  
Evans LC., 2002, PARTIAL DIFFERENTIAL
[6]  
GONZALEZ MDM, J DIFFERENTIAL EQUAT
[7]   Mean field games [J].
Lasry, Jean-Michel ;
Lions, Pierre-Louis .
JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01) :229-260
[8]  
MARKOWICH PA, MATH MODELS IN PRESS
[9]  
Spohn H., 1991, Large Scale Dynamics of Interacting Particles