Compact representation of range imaging surfaces

被引:1
作者
Li, B. [1 ]
Meng, Q. [2 ]
Holstein, H. [2 ]
机构
[1] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M1 5GD, Lancs, England
[2] Univ Wales, Dept Comp Sci, Aberystwyth SY23 3DB, Dyfed, Wales
来源
2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS | 2006年
关键词
geometrip modelling; neural network applications; image representations;
D O I
10.1109/ICIP.2006.312974
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Range images of complex geometry presented by large point data sets almost always yield surface reconstruction imperfections. We propose a novel compact and complete mesh representation for non-uniformly sampled noisy range image data using an adaptive Radial Basis Function network. The network is established using a heuristic learning strategy. Neurons can be inserted, removed or updated iteratively, adapting to the complexity and distribution of the underlying data. This flexibility is particularly suited to highly variable spatial frequencies, and is conducive to data compression with network representations. Experiments confirm the performance advantages of the network when applied to 3D point-cloud surface reconstruction.
引用
收藏
页码:2189 / +
页数:2
相关论文
共 9 条
[1]   Reformulated radial basis neural networks trained by gradient descent [J].
Karayiannis, NB .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (03) :657-671
[2]  
KOJEKINE N, 2003, COMPUTER GRAPHICS, V27, P463
[3]   Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm [J].
Lu, YW ;
Sundararajan, N ;
Saratchandran, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (02) :308-318
[4]  
Lu YW, 1997, NEURAL COMPUT, V9, P461, DOI 10.1162/neco.1997.9.2.461
[5]   ON THE TRAINING OF RADIAL BASIS FUNCTION CLASSIFIERS [J].
MUSAVI, MT ;
AHMED, W ;
CHAN, KH ;
FARIS, KB ;
HUMMELS, DM .
NEURAL NETWORKS, 1992, 5 (04) :595-603
[6]   A Resource-Allocating Network for Function Interpolation [J].
Platt, John .
NEURAL COMPUTATION, 1991, 3 (02) :213-225
[7]   Training radial basis neural networks with the extended Kalman filter [J].
Simon, D .
NEUROCOMPUTING, 2002, 48 :455-475
[8]  
TAO K, 1993, C REC 27 AS C SIGN S, V1, P401
[9]   Modelling with implicit surfaces that interpolate [J].
Turk, G ;
O'Brien, JF .
ACM TRANSACTIONS ON GRAPHICS, 2002, 21 (04) :855-873