Noisy intermediate-scale quantum algorithm for semidefinite programming

被引:11
作者
Bharti, Kishor [1 ]
Haug, Tobias [2 ]
Vedral, Vlatko [1 ,3 ]
Kwek, Leong-Chuan [1 ,4 ,5 ,6 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[2] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
[3] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[4] CNRS UNS NUS NTU Int Joint Res Unit, MajuLab, UMI 3654, Singapore, Singapore
[5] Nanyang Technol Univ, Natl Inst Educ, 1 Nanyang Walk, Singapore 637616, Singapore
[6] Sch Elect & Elect Engn, Block S2-1,50 Nanyang Ave, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Application programs - Combinatorial optimization - Convex optimization - Eigenvalues and eigenfunctions - Excited states - Global optimization - Ground state - Polynomial approximation - Quantum optics;
D O I
10.1103/PhysRevA.105.052445
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Semidefinite programs (SDPs) are convex optimization programs with vast applications in control theory, quantum information, combinatorial optimization, and operational research. Noisy intermediate-scale quantum (NISQ) algorithms aim to make an efficient use of the current generation of quantum hardware. However, optimizing variational quantum algorithms is a challenge as it is an nondeterministic polynomial time-hard problem that in general requires an exponential time to solve and can contain many far from optimal local minima. Here, we present a current term NISQ algorithm for solving SDPs. The classical optimization pro-gram of our NISQ solver is another SDP over a lower dimensional ansatz space. We harness the SDP-based formulation of the Hamiltonian ground-state problem to design a NISQ eigensolver. Unlike variational quantum eigensolvers, the classical optimization program of our eigensolver is convex and can be solved in polynomial time with the number of ansatz parameters, and every local minimum is a global minimum. We find numeric evidence that NISQ SDP can improve the estimation of ground-state energies in a scalable manner. Further, we efficiently solve constrained problems to calculate the excited states of Hamiltonians, find the lowest energy of symmetry constrained Hamiltonians, and determine the optimal measurements for quantum state discrimination. We demonstrate the potential of our approach by finding the largest eigenvalue of up to 2(1000) dimensional matrices and solving graph problems related to quantum contextuality. We also discuss NISQ algorithms for rank-constrained SDPs. Our work extends the application of NISQ computers onto one of the most successful algorithmic frameworks of the past few decades.
引用
收藏
页数:13
相关论文
共 104 条
  • [1] Anjos, 2011, HDB SEMIDEFINITE CON, V166
  • [2] [Anonymous], ARXIV161205903
  • [3] Anschuetz E.R., arXiv
  • [4] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [5] Quantum state discrimination and its applications
    Bae, Joonwoo
    Kwek, Leong-Chuan
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (08)
  • [6] Physical characterization of quantum devices from nonlocal correlations
    Bancal, Jean-Daniel
    Navascues, Miguel
    Scarani, Valerio
    Vertesi, Tamas
    Yang, Tzyh Haur
    [J]. PHYSICAL REVIEW A, 2015, 91 (02)
  • [7] Barison S., 2021, QUANTUM, V5, P512
  • [8] Bell JS., 1964, Physics, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195]
  • [9] Hardware-efficient variational quantum algorithms for time evolution
    Benedetti, Marcello
    Fiorentini, Mattia
    Lubasch, Michael
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [10] Hamiltonian Operator Approximation for Energy Measurement and Ground-State Preparation
    Bespalova, Tatiana A.
    Kyriienko, Oleksandr
    [J]. PRX QUANTUM, 2021, 2 (03):