Central invariants and Frobenius-Schur indicators for semisimple quasi-Hopf algebras

被引:36
作者
Mason, G
Ng, SH [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[3] Towson Univ, Dept Math, Baltimore, MD 21204 USA
基金
美国国家科学基金会;
关键词
Frobenius-Schur indicators; gauge equivalence; tenser categories; quasi-Hopf algebras;
D O I
10.1016/j.aim.2003.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain a canonical central element v(H) for each semi-simple quasi-Hopf algebra H over any field k and prove that v(H) is invariant under gauge transformations. We show that if k is algebraically closed of characteristic zero then for any irreducible representation of H which affords the character chi, chi(v(H)) takes only the values 0, 1 or -1, moreover if H is a Hopf algebra or a twisted quantum double of a finite group then chi(v(H)) is the corresponding Frobenius-Schur indicator. We also prove an analog of a theorem of Larson-Radford for split semi-simple quasi-Hopf algebras over any field k. Using this result, we establish the relationship between the antipode S, the values of chi(v(H)), and certain associated bilinear forms when the underlying field k is algebraically closed of characteristic zero. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 195
页数:35
相关论文
共 28 条
[1]   QUASI-QUANTUM GROUPS, KNOTS, 3-MANIFOLDS, AND TOPOLOGICAL FIELD-THEORY [J].
ALTSCHULER, D ;
COSTE, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) :83-107
[2]  
Bakalov B., 2001, U LECT SERIES, V21
[3]   The Frobenius-Schur indicator in conformal field theory [J].
Bantay, P .
PHYSICS LETTERS B, 1997, 394 (1-2) :87-88
[4]   Frobenius-Schur indicators, the Klein-bottle amplitude, and the principle of orbifold covariance [J].
Bantay, P .
PHYSICS LETTERS B, 2000, 488 (02) :207-210
[5]  
BANTAY P, 2002, COMMUNICATION
[6]  
CURTIS CW, 1988, WILEY CLASS LIB
[7]  
DIJKGRAAF R, 1992, INTEGRABLE SYSTEMS AND QUANTUM GROUPS, P75
[8]  
Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
[9]  
Etingof P, 2002, INT MATH RES NOTICES, V2002, P757
[10]  
Etingof P., ARXIVMATHQA0203060