Admixed Populations Improve Power for Variant Discovery and Portability in Genome-Wide Association Studies

被引:19
|
作者
Lin, Meng [1 ]
Park, Danny S. [2 ]
Zaitlen, Noah A. [3 ]
Henn, Brenna M. [4 ,5 ]
Gignoux, Christopher R. [1 ]
机构
[1] Univ Colorado, Colorado Ctr Personalized Med, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[3] Univ Calif Los Angeles, Dept Neurol & Computat Med, Los Angeles, CA USA
[4] Univ Calif Davis, Ctr Populat Biol, Dept Anthropol, Davis, CA 95616 USA
[5] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
关键词
admixture; statistical power; complex trait genetics; polygenic score; genetic architecture; GENETIC ANCESTRY; PROSTATE-CANCER; RISK; STRATIFICATION; SUSCEPTIBILITY; ARCHITECTURE; PREDICTION; COMPONENTS; SCORES; ASTHMA;
D O I
10.3389/fgene.2021.673167
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies (GWAS) are primarily conducted in single-ancestry settings. The low transferability of results has limited our understanding of human genetic architecture across a range of complex traits. In contrast to homogeneous populations, admixed populations provide an opportunity to capture genetic architecture contributed from multiple source populations and thus improve statistical power. Here, we provide a mechanistic simulation framework to investigate the statistical power and transferability of GWAS under directional polygenic selection or varying divergence. We focus on a two-way admixed population and show that GWAS in admixed populations can be enriched for power in discovery by up to 2-fold compared to the ancestral populations under similar sample size. Moreover, higher accuracy of cross-population polygenic score estimates is also observed if variants and weights are trained in the admixed group rather than in the ancestral groups. Common variant associations are also more likely to replicate if first discovered in the admixed group and then transferred to an ancestral population, than the other way around (across 50 iterations with 1,000 causal SNPs, training on 10,000 individuals, testing on 1,000 in each population, p = 3.78e-6, 6.19e-101, similar to 0 for F-ST = 0.2, 0.5, 0.8, respectively). While some of these F-ST values may appear extreme, we demonstrate that they are found across the entire phenome in the GWAS catalog. This framework demonstrates that investigation of admixed populations harbors significant advantages over GWAS in single-ancestry cohorts for uncovering the genetic architecture of traits and will improve downstream applications such as personalized medicine across diverse populations.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Genome-wide association study of inhaled corticosteroid response in admixed children with asthma
    Hernandez-Pacheco, Natalia
    Farzan, Niloufar
    Francis, Ben
    Karimi, Leila
    Repnik, Katja
    Vijverberg, Susanne J.
    Soares, Patricia
    Schieck, Maximilian
    Gorenjak, Mario
    Forno, Erick
    Eng, Celeste
    Oh, Sam S.
    Perez-Mendez, Lina
    Berce, Vojko
    Tavendale, Roger
    Samedy, Lesly-Anne
    Hunstman, Scott
    Hu, Donglei
    Meade, Kelley
    Farber, Harold J.
    Avila, Pedro C.
    Serebrisky, Denise
    Thyne, Shannon M.
    Brigino-Buenaventura, Emerita
    Rodriguez-Cintron, William
    Sen, Saunak
    Kumar, Rajesh
    Lenoir, Michael
    Rodriguez-Santana, Jose R.
    Celedon, Juan C.
    Mukhopadhyay, Somnath
    Potocnik, Uros
    Pirmohamed, Munir
    Verhamme, Katia M.
    Kabesch, Michael
    Palmer, Colin N. A.
    Hawcutt, Daniel B.
    Flores, Carlos
    Maitland-van der Zee, Anke H.
    Burchard, Esteban G.
    Pino-Yanes, Maria
    CLINICAL AND EXPERIMENTAL ALLERGY, 2019, 49 (06): : 789 - 798
  • [42] Robust Reference Powered Association Test of Genome-Wide Association Studies
    Wang, Yi
    Li, Yi
    Hao, Meng
    Liu, Xiaoyu
    Zhang, Menghan
    Wang, Jiucun
    Xiong, Momiao
    Shugart, Yin Yao
    Jin, Li
    FRONTIERS IN GENETICS, 2019, 10
  • [43] A genome-wide association study on African-ancestry populations for asthma
    Mathias, Rasika A.
    Grant, Audrey V.
    Rafaels, Nicholas
    Hand, Tracey
    Gao, Li
    Vergara, Candelaria
    Tsai, Yuhjung J.
    Yang, Mao
    Campbell, Monica
    Foster, Cassandra
    Gao, Peisong
    Togias, A.
    Hansel, Nadia N.
    Diette, Gregory
    Adkinson, N. Franklin
    Liu, Mark C.
    Faruque, Mezbah
    Dunston, Georgia M.
    Watson, Harold R.
    Bracken, Michael B.
    Hoh, Josephine
    Maul, Pissamai
    Maul, Trevor
    Jedlicka, Anne E.
    Murray, Tanda
    Hetmanski, Jacqueline B.
    Ashworth, Roxann
    Ongaco, Chrissie M.
    Hetrick, Kurt N.
    Doheny, Kimberly F.
    Pugh, Elizabeth W.
    Rotimi, Charles N.
    Ford, Jean
    Eng, Celeste
    Burchard, Esteban G.
    Sleiman, Patrick M. A.
    Hakonarson, Hakon
    Forno, Erick
    Raby, Benjamin A.
    Weiss, Scott T.
    Scott, Alan F.
    Kabesch, Michael
    Liang, Liming
    Abecasis, Goncalo
    Moffatt, Miriam F.
    Cookson, William O. C.
    Ruczinski, Ingo
    Beaty, Terri H.
    Barnes, Kathleen C.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2010, 125 (02) : 336 - 346
  • [44] Power Comparison of Admixture Mapping and Direct Association Analysis in Genome-Wide Association Studies
    Qin, Huaizhen
    Zhu, Xiaofeng
    GENETIC EPIDEMIOLOGY, 2012, 36 (03) : 235 - 243
  • [45] On the Analysis of Genome-Wide Association Studies in Family-Based Designs: A Universal, Robust Analysis Approach and an Application to Four Genome-Wide Association Studies
    Won, Sungho
    Wilk, Jemma B.
    Mathias, Rasika A.
    O'Donnell, Christopher J.
    Silverman, Edwin K.
    Barnes, Kathleen
    O'Connor, George T.
    Weiss, Scott T.
    Lange, Christoph
    PLOS GENETICS, 2009, 5 (11)
  • [46] EigenGWAS: finding loci under selection through genome-wide association studies of eigenvectors in structured populations
    Chen, G-B
    Lee, S. H.
    Zhu, Z-X
    Benyamin, B.
    Robinson, M. R.
    HEREDITY, 2016, 117 (01) : 51 - 61
  • [47] Genome-wide association studies in biliary atresia
    Ningappa, Mylarappa
    Min, Jun
    Higgs, Brandon W.
    Ashokkumar, Chethan
    Ranganathan, Sarangarajan
    Sindhi, Rakesh
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2015, 7 (05) : 267 - 273
  • [48] A short review on Genome-Wide Association Studies
    Cao, Xiaowen
    Xing, Li
    He, Hua
    Zhang, Xuekui
    BIOINFORMATION, 2020, 16 (05) : 393 - 395
  • [49] The nature of confounding in genome-wide association studies
    Vilhjalmsson, Bjarni J.
    Nordborg, Magnus
    NATURE REVIEWS GENETICS, 2013, 14 (01) : 1 - 1
  • [50] Genome-wide association studies in the genetics of asthma
    Saffron A. G. Willis-Owen
    William O. Cookson
    Miriam F. Moffatt
    Current Allergy and Asthma Reports, 2009, 9 : 3 - 9