Admixed Populations Improve Power for Variant Discovery and Portability in Genome-Wide Association Studies

被引:19
|
作者
Lin, Meng [1 ]
Park, Danny S. [2 ]
Zaitlen, Noah A. [3 ]
Henn, Brenna M. [4 ,5 ]
Gignoux, Christopher R. [1 ]
机构
[1] Univ Colorado, Colorado Ctr Personalized Med, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[3] Univ Calif Los Angeles, Dept Neurol & Computat Med, Los Angeles, CA USA
[4] Univ Calif Davis, Ctr Populat Biol, Dept Anthropol, Davis, CA 95616 USA
[5] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
关键词
admixture; statistical power; complex trait genetics; polygenic score; genetic architecture; GENETIC ANCESTRY; PROSTATE-CANCER; RISK; STRATIFICATION; SUSCEPTIBILITY; ARCHITECTURE; PREDICTION; COMPONENTS; SCORES; ASTHMA;
D O I
10.3389/fgene.2021.673167
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies (GWAS) are primarily conducted in single-ancestry settings. The low transferability of results has limited our understanding of human genetic architecture across a range of complex traits. In contrast to homogeneous populations, admixed populations provide an opportunity to capture genetic architecture contributed from multiple source populations and thus improve statistical power. Here, we provide a mechanistic simulation framework to investigate the statistical power and transferability of GWAS under directional polygenic selection or varying divergence. We focus on a two-way admixed population and show that GWAS in admixed populations can be enriched for power in discovery by up to 2-fold compared to the ancestral populations under similar sample size. Moreover, higher accuracy of cross-population polygenic score estimates is also observed if variants and weights are trained in the admixed group rather than in the ancestral groups. Common variant associations are also more likely to replicate if first discovered in the admixed group and then transferred to an ancestral population, than the other way around (across 50 iterations with 1,000 causal SNPs, training on 10,000 individuals, testing on 1,000 in each population, p = 3.78e-6, 6.19e-101, similar to 0 for F-ST = 0.2, 0.5, 0.8, respectively). While some of these F-ST values may appear extreme, we demonstrate that they are found across the entire phenome in the GWAS catalog. This framework demonstrates that investigation of admixed populations harbors significant advantages over GWAS in single-ancestry cohorts for uncovering the genetic architecture of traits and will improve downstream applications such as personalized medicine across diverse populations.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The Power of Meta-Analysis in Genome-Wide Association Studies
    Panagiotou, Orestis A.
    Willer, Cristen J.
    Hirschhorn, Joel N.
    Ioannidis, John P. A.
    ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 14, 2013, 14 : 441 - 465
  • [22] The power of genetic diversity in genome-wide association studies of lipids
    Graham, Sarah E.
    Clarke, Shoa L.
    Wu, Kuan-Han H.
    Kanoni, Stavroula
    Zajac, Greg J. M.
    Ramdas, Shweta
    Surakka, Ida
    Ntalla, Ioanna
    Vedantam, Sailaja
    Winkler, Thomas W.
    Locke, Adam E.
    Marouli, Eirini
    Hwang, Mi Yeong
    Han, Sohee
    Narita, Akira
    Choudhury, Ananyo
    Bentley, Amy R.
    Ekoru, Kenneth
    Verma, Anurag
    Trivedi, Bhavi
    Martin, Hilary C.
    Hunt, Karen A.
    Hui, Qin
    Klarin, Derek
    Zhu, Xiang
    Thorleifsson, Gudmar
    Helgadottir, Anna
    Gudbjartsson, Daniel F.
    Holm, Hilma
    Olafsson, Isleifur
    Akiyama, Masato
    Sakaue, Saori
    Terao, Chikashi
    Kanai, Masahiro
    Zhou, Wei
    Brumpton, Ben M.
    Rasheed, Humaira
    Ruotsalainen, Sanni E.
    Havulinna, Aki S.
    Veturi, Yogasudha
    Feng, QiPing
    Rosenthal, Elisabeth A.
    Lingren, Todd
    Pacheco, Jennifer Allen
    Pendergrass, Sarah A.
    Haessler, Jeffrey
    Giulianini, Franco
    Bradford, Yuki
    Miller, Jason E.
    Campbell, Archie
    NATURE, 2021, 600 (7890) : 675 - +
  • [23] Genome-Wide Association Studies to Improve Wood Properties: Challenges and Prospects
    Du, Qingzhang
    Lu, Wenjie
    Quan, Mingyang
    Xiao, Liang
    Song, Fangyuan
    Li, Peng
    Zhou, Daling
    Xie, Jianbo
    Wang, Longxin
    Zhang, Deqiang
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [24] Confounding and Heterogeneity in Genetic Association Studies with Admixed Populations
    Liu, Jinghua
    Lewinger, Juan Pablo
    Gilliland, Frank D.
    Gauderman, W. James
    Conti, David V.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 177 (04) : 351 - 360
  • [25] Progress from genome-wide association studies and copy number variant studies in epilepsy
    Leu, Costin
    Coppola, Antonietta
    Sisodiya, Sanjay M.
    CURRENT OPINION IN NEUROLOGY, 2016, 29 (02) : 158 - 167
  • [26] Genome-wide association study of metabolic syndrome in Korean populations
    Oh, Seung-Won
    Lee, Jong-Eun
    Shin, Eunsoon
    Kwon, Hyuktae
    Choe, Eun Kyung
    Choi, Su-Yeon
    Rhee, Hwanseok
    Choi, Seung Ho
    PLOS ONE, 2020, 15 (01):
  • [27] ancGWAS: a post genome-wide association study method for interaction, pathway and ancestry analysis in homogeneous and admixed populations
    Chimusa, Emile R.
    Mbiyavanga, Mamana
    Mazandu, Gaston K.
    Mulder, Nicola J.
    BIOINFORMATICS, 2016, 32 (04) : 549 - 556
  • [28] Genome-Wide Association Studies in Atherosclerosis
    Sivapalaratnam, S.
    Motazacker, M. M.
    Maiwald, S.
    Hovingh, G. K.
    Kastelein, J. J. P.
    Levi, M.
    Trip, M. D.
    Dallinga-Thie, G. M.
    CURRENT ATHEROSCLEROSIS REPORTS, 2011, 13 (03) : 225 - 232
  • [29] Genome-wide association studies: a primer
    Corvin, A.
    Craddock, N.
    Sullivan, P. F.
    PSYCHOLOGICAL MEDICINE, 2010, 40 (07) : 1063 - 1077
  • [30] Genome-wide association studies with metabolomics
    Adamski, Jerzy
    GENOME MEDICINE, 2012, 4